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1. Introduction

Solving equations in algebraic structures is a fundamental task in mathematics.

Here we tackle this problem for free partially commutative monoids with involution

and for graph groups, which are free groups with a partial commutation relation

between generators.

Basic algebraic structures involving partial commutations are free partially com-

mutative monoids (also known as trace monoids). They were considered in com-

binatorics by Cartier and Foata [5] and in computer science by Keller [14] and

Mazurkiewicz [20,21]. Trace monoids serve as an algebraic tool for investigating

concurrent systems. Atomic actions are represented by letters and independency

of actions is reflected by a partial commutation relation. If each atomic action a

has an inverse a such that aa = aa = 1, then, on the algebraic level, we switch

from monoids to groups. Without the cancellation law aa = aa = 1, we obtain

1



October 19, 2005 To appear: International Journal of Algebra and Computation

2 Diekert and Muscholl

free partially commutative monoids with involution. It turns out that our decidabil-

ity result on graph groups follows from the corresponding result on free partially

commutative monoids with involution. Therefore we focus on the latter objects.

We show that the existential theory of equations with recognizable constraints

in free partially commutative monoids with involution is decidable. If the underly-

ing alphabet of generators is fixed, then we obtain a Pspace-completeness result,

otherwise (in the uniform setting) our decision procedure is in ExpSpace. In the

conference version [10] we gave a non-elementary uniform decision procedure, hence

we obtain a significant improvement here.

The relation of our work to previous results on existential theories of equations

is as follows. In the simplest setting we ask whether a single word equation with

constants is solvable. This problem is easily seen to be Np-hard. It becomes Pspace-

hard, as soon as we add regular constraints for the unknowns, simply because the in-

tersection problem for regular languages is Pspace-complete, [16]. Makanin proved

the decidability of word equations [17] and Schulz extended this decidability result

in order to include regular constraints [27]. By standard methods this means that

the existential theory of word equations (with regular constraints) is decidable. The

situation in free groups turned out to be much more complicated.

Makanin also proved that the existential theory in free groups is decidable [18].

However, in that case the scheme of Makanin has been shown to be not-primitive

recursive, see [15]. Only when Plandowski invented a new method for solving word

equations by some polynomial space bounded algorithm [25], the corresponding

problem for free groups was reconsidered; and Gutiérrez succeeded in extending

Plandowski’s polynomial space algorithm to free groups [13].

The situation in trace monoids is more complicated due to the partial commu-

tation which cannot be expressed simply by equations. To be more precise, over

traces an equation like XY = Y X is implied by independency, so the equation

may have many non-trivial solutions, in contrast to the situation in free monoids

or free groups. To overcome this difficulty one is led to work with recognizable con-

straints over trace monoids, which in the reduction to the free case become regular

constraints. So, when Matiyasevich showed in 1996 that the existential theory of

free partially commutative monoids is decidable [19,9], Schulz’s generalization of

Makanin’s result was used.

In the present paper we show decidability for graph groups, which is an extension

of the result on the existential theory of equations with rational constraints in free

groups. However, for graph groups rational constraints are too powerful, in general:

They lead to undecidability (this follows from Theorem 22). The good notion turned

out to be normalized regular constraints, which are introduced here. Our decidability

proof does not reduce equations in graph groups to equations free groups, but rather

to equations with regular constraints over free monoids with involution. Then one

can apply [6].

Based on the conference version [10], the results of the present paper have been

extended together with Lohrey in order to obtain general transfer results for the
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existential and positive theories with respect to graph products, [7,8]. Formally, this

leads to stronger statements than the results here, but the proofs in [7,8] rely on

reductions to the main result of the present work, Theorem 20.

Solving equations in partially commutative structures also found a quite unex-

pected application in combinatorial topology. In [26] the string graph recognition

problem for a compact surface of higher genus is reduced to (quadratic) equations

in free partially commutative monoids with involution.

2. Preliminaries

2.1. Free partially commutative monoids with involution

Throughout the paper Γ means a finite alphabet which is equipped with an invo-

lution : Γ → Γ. An involution is a mapping such that a = a for all a ∈ Γ. The

involution : Γ → Γ is extended to the free monoid Γ∗ by a1 · · · an = an · · ·a1. In

particular, the involution reverses the order. A symmetric and irreflexive relation

I ⊆ Γ×Γ (such that (a, b) ∈ I implies (a, b) ∈ I) is called an independence relation

(which is compatible with the involution). Its complement D = (Γ× Γ) \ I is called

a dependence relation. The relation D is reflexive and symmetric (and we have

(a, b) ∈ D implies (a, b) ∈ D for all a, b ∈ Γ). In the following all (in-)dependence

relations are compatible with the involution. In particular, we have (a, a) ∈ D for

all a ∈ Γ. The free partially commutative monoid M(Γ, I) is defined by the quotient

monoid Γ∗/{ab = ba | (a, b) ∈ I}. According to Mazurkiewicz [20] it is also called a

trace monoid and its elements (which are congruence classes) are called traces. For

an overview of trace theory we refer to [11].

If the reference to (Γ, I) is clear, we also write M instead of M(Γ, I). The length

|x| of a trace x is the length of any representing word. A letter a ∈ Γ is called minimal

(maximal resp.) in x, if we can write x = ay (x = ya resp.) for some y ∈ M. The

set of minimal (maximal resp.) elements consists of pairwise independent letters.

For a ∈ Γ let I(a) = {b ∈ Γ | (a, b) ∈ I}. The set of letters occurring in x ∈ Γ∗ or

in x ∈ M is denoted alph(x) and by I(x) we mean I(x) =
⋂

a∈alph(x) I(a).

By 1 we denote the empty word, the empty trace, and the unit element in a

group.

We shall use node-labeled directed acyclic graphs [V,E, λ] in order to represent

traces. Here V is the set of vertices, E is the edge set, and λ : V → Γ is the labeling.

Such a graph induces a labeled partial order [V,E∗, λ], and a labeled partial order

is also called a partially ordered multi set or pomset for short.

In our setting we assume that V is finite and that (λ(v), λ(v′)) ∈ D implies

either (v, v′) ∈ E∗ or (v′, v) ∈ E∗, so all dependent vertices are ordered. Thus,

[V,E, λ] defines a unique trace x = [V,E, λ] ∈ M in a canonical way by taking

the congruence class of any linearization. If we start with a finite word a1 · · · an for

representing a trace, then we may take V = {1, . . . , n}. Each i is viewed as a node

with label λ(i) = ai. We define an arc from ai to aj if and only if both, i < j and

(ai, aj) ∈ D. In this way we obtain a node-labeled directed acyclic graph [V,E, λ],
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which is called the dependence graph of the trace [a1 · · · an]. A dependence graph

[V,E, λ] represents a trace x ∈ M and, in addition, (λ(v), λ(v′)) ∈ D is equivalent

to (v, v′) ∈ idΓ ∪E ∪E−1. Up to isomorphism, the dependence graph of x is unique,

and so is its induced pomset [V,E∗, λ] which is also denoted by [V,≤, λ].

Since the independence relation I is supposed to be compatible with the in-

volution, the involution transfers to traces. If we have x = [a1 · · · an] ∈ M, then

x = [an · · · a1], [V,E, λ] = [V,E−1, λ] and [V,≤, λ] = [V,≥, λ] respectively, where

λ(v) = λ(v) for all v ∈ V . Hence, (M, ) is a trace monoid with involution. A

monoid with involution satisfies 1 = 1, x = x, and xy = y x. (In particular, every

group is a monoid with the involution defined by taking inverses.)

2.2. Factors

Let x = [V,≤, λ] ∈ M be a trace where ≤ is the partial order induced by the

dependence graph. A factor or factor trace is a trace f ∈ M such that we can write

x = pfq. Given a factorization x = pfq, there is some F ⊆ V such that the induced

pomset of F in [V,≤, λ] represents f . Moreover, F has the property that whenever

v ≤ v′ ≤ v′′ with v, v′′ ∈ F , then v′ ∈ F , too. Conversely, let F ⊆ V be a subset

with this property: v ≤ v′ ≤ v′′ with v, v′′ ∈ F implies v′ ∈ F . Then we can factorize

x = pfq such that F represents the factor f , but due to partial commutation the

factorization is not unique (in contrast to the case of words). There is another

difference between words and traces. Assume that V = F ∪ G is a disjoint union

where F represents a factor f and G represents a factor g. Then this does not mean

that x is a product of f and g, in general. Indeed, let M = {a, b}∗ × {c, d}∗ and

x = abcd. Then we have abcd = cadb, so both f = bc and g = ad are factors. But x

is not a product of f and g.

2.3. Clans and the parameter τ

In order to have a convenient complexity bound below we define an equivalence

relation on Γ such that a and b are in one class, if D(a) = D(b). The number of

equivalence classes is denoted by c(Γ, D) and each class [a] = {b ∈ Γ | D(a) = D(b)}

is called a complete clan, or in the following simply clan for short. Thus, a clan in

(Γ, D) is a maximal subset A ⊆ Γ such that (a, c) ∈ D ⇔ (b, c) ∈ D for all a, b ∈ A

and c ∈ Γ. Note that a clan is indeed a complete subgraph of (Γ, D), since D is

reflexive. A clan A is called thin, if there are a ∈ A, b ∈ Γ \A such that (a, b) ∈ I ,

otherwise it is called thick. There is at most one thick clan due to maximality. The

number of thin clans is denoted by τ(Γ, D) or τ for short. It is either c(Γ, D) or

c(Γ, D)−1, it is never 1. If M is a direct product of d free monoids, then the number

τ of thin clans is d for d > 1, and it is 0 for d = 1. In the following we pick a thin clan

and we make it thick by removing independency. It might be that the parameter

c(Γ, D) does not change, but the parameter τ decreases. This is the reason why the

induction below is based on the parameter τ instead of the number of clans.
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3. Normal forms

In this section (and in this section only) we assume that the involution : Γ → Γ

is without fixed points, i.e., a 6= a for all a ∈ Γ. We fix some thin clan of (Γ, D),

which we write in the form A ∪ A with A ∩A = ∅. We define

D̂ = D ∪ Γ × (A ∪ A) ∪ (A ∪ A) × Γ.

The subset A ∩ A is not a thin clan anymore with respect to D̂ since it is now

included in some thick clan. Let Î = (Γ × Γ) \ D̂, then M̂ = M(Γ, Î) is a trace

monoid with involution, and the number of thin clans in (Γ, D̂) is at most τ − 1.

3.1. Source, median, and target positions

By ψ̂ we denote the canonical homomorphism ψ̂ : M̂ → M. The aim is to define a

normal form mapping nf : M → M̂ which is compatible with the involution, i.e.,

we demand ψ̂(nf(x)) = x and nf(x) = nf(x). Using a classical normal form such

as the representation by the lexicographical first word does not work, as shown in

Remark 32. The existence of a suitable normal form relies on the following simple

lemma:

Lemma 1. Let a ∈ Γ such that a 6= a and let w ∈ {a, a}∗ be any word. Then there

exists a unique k ≥ 0 such that w ∈ a∗(aa∗)k(a∗a)ka∗.

For the same k we also have w ∈ a∗(aa∗)k(a∗a)ka∗.

Proof. Let ` be the number of a in w and write w = uv where |u| = `. Then k

is the number of a in u and we have u ∈ a∗(aa∗)k and v ∈ (a∗a)ka∗. Moreover,

w = v u, v ∈ a∗(aa∗)k and u ∈ (a∗a)ka∗.

Recall that we view a trace x as a labeled pomset [V,≤, λ], λ : V → Γ. Often, we

write v ∈ x instead of v ∈ V and we write u ‖ v whenever u, v ∈ V are incomparable

with respect to ≤. We also write (u, v) ∈ I when (λ(u), λ(v)) ∈ I , and analogously

for D = (Γ × Γ) \ I . Of course, u ‖ v implies (u, v) ∈ I . Let a1 < · · · < aq be the

linearly ordered subset of (V,≤) containing all vertices with label in the clan A∪A.

We might have q = 0 meaning that there are no vertices with label in A ∪ A. We

read a1 < · · · < aq as a word a1 · · ·aq in the free monoid (A∪A)∗. With each vertex

v ∈ V we associate the maximal factor of a1 · · · aq consisting of the vertices w with

label in A∪A which are incomparable with v, i.e., w ‖ v. For v ∈ V the source s(v)

and the target point t(v) of v are defined as follows.

s(v) = sup {i | ai ≤ v} , t(v) = inf {i | v ≤ ai} .

By convention, sup ∅ = 0 and inf ∅ = q + 1. Thus, 0 ≤ s(v) ≤ q, 1 ≤ t(v) ≤ q + 1

and s(v) ≤ t(v) for all v ∈ V . Note that we have s(v) = t(v) if and only if the label

of v belongs to A ∪A.
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For 0 ≤ s ≤ t ≤ q + 1 we define the median position m(s, t): For s = t we let

m(s, t) = s. For s < t we choose by Lemma 1 the unique c with s ≤ c < t and k ≥ 0

such that

as+1 · · · ac ∈ A∗(AA∗)k,

ac+1 · · · at−1 ∈ (A
∗

A)kA
∗

.

Then we define m(s, t) = c+ 1
2 and we call m(s, t) the median position. The median

position m(s(v), t(v)) is called the global position of a vertex v ∈ V , it is denoted

by g(v), i.e., g(v) = m(s(v), t(v)).

Lemma 2. Let x = [V,≤, λ] and v, w ∈ V be vertices such that v ≤ w. Then we

have s(v) ≤ s(w), t(v) ≤ t(w), and g(v) ≤ g(w).

Proof. Obviously, s(v) ≤ s(w) and t(v) ≤ t(w). The lemma now follows from the

fact m(s− 1, t) ≤ m(s, t) ≤ m(s, t+ 1), which in turn is easy to verify.

We are ready to define the normal form nf(x) ∈ M̂ of a trace x ∈ M. We do so

by introducing new arcs into the dependence graph [V,E, λ] of x: Let v, w ∈ V such

that λ(w) ∈ A∪A and v ‖ w. (In particular, λ(v) /∈ A∪A and g(v) 6= g(w) because

g(v) ∈ N + 1
2 , while g(w) ∈ N.) We define a new arc from v to w, if g(v) < g(w),

otherwise we define a new arc from w to v. The arcs being already present in the

dependence graph of x are called old arcs. The union Ê of old and new arcs defines

a labeled directed graph [V, Ê, λ].

Lemma 3. Let x = [V, Ê, λ] ∈ M and consider vertices u, v ∈ V . For u ≤ v in

[V, Ê, λ] we have g(u) ≤ g(v). Moreover, we have g(u) < g(v) whenever there is a

path from u to v in [V, Ê, λ] using at least one new arc.

Proof. Let (u, v) ∈ Ê. Then g(u) ≤ g(v) by Lemma 2. Moreover, if (u, v) is a new

arc then g(v) − g(u) ≥ 1/2.

The lemma says that following a directed path in Ê never decreases the global

position. It is however increased as soon as we use a new arc. Therefore the graph

[V, Ê, λ] is acyclic since [V,E, λ] has been acyclic. Thus, [V, Ê, λ] defines a unique

trace nf(x) = [V, Ê, λ] of M̂. The important property of the normal form is nf(x) =

nf(x). We state this as a lemma.

Lemma 4. Let the involution : Γ → Γ be without fixed points and let the normal

form be defined as above. Then we have nf(x) = nf(x) for all x ∈ M.

Proof. Let (a, b) ∈ I and w ∈ {a, a}∗, a ∈ A. By Lemma 1 there exists a unique

k ≥ 0 such that w ∈ a∗(aa∗)k(a∗a)ka∗. Write w = uv with u ∈ a∗(aa∗)k and

v ∈ (a∗a)ka∗. Then nf(wb) = ubv and nf(wb) = vbu. The claim of the lemma

follows easily from this fact, since a trace is uniquely defined by its projections to

subalphabets of at most two letters.
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Remark 5. Let x = [V,E, λ], x = [V,E−1, λ] be in M. Then the global position of

v ∈ V in nf(x) is q + 1 − g(v).

Example 6. Let x = a a aa a aa a aa a b and (a, b) ∈ I . Then k = 3, g(b) = 6 1
2 and

nf(x) = a a aa a a b a aa a a.

Remark 7. If the involution has fixed points, then a normal form satisfying nf(x) =

nf(x) for all x ∈ M cannot exist, in general. Indeed, assume we were in the situation

a, b ∈ A, a = a, b = b, and (a, b) ∈ I . Then ab = ab, but (a, b) ∈ D̂, so necessarily

ab 6= ba and hence nf(ab) 6= nf(ab) in M̂.

3.2. Lifting a factorization to normal forms

The results of this paper are based on the following theorem. We will apply the

theorem to equations of the form x = yz, reducing a system of equations over M to

one over M̂. The important point in the statement is that the bound on d depends

only on the number of thin clans τ(Γ, D).

Theorem 8. Let the involution : Γ → Γ be without fixed points, τ = τ(Γ, D) and

let x, x1, x2 ∈ M be traces. Then the following assertions are equivalent.

(i) x = x1x2.

(ii) There exist d ≤ 3τ2 + 8τ + 7, traces y1, . . . , yd ∈ M̂, an index 0 ≤ c ≤ d,

and a permutation π ∈ Perm(d) with the following properties:

nf(x) = yπ(1) · · · yπ(d),

nf(x1) = y1 · · · yc,

nf(x2) = yc+1 · · · yd,

alph(yi) × alph(yj) ⊆ I for all i, j, where (i− j)(π(i) − π(j)) < 0.

The assertion (ii) ⇒ (i) of Theorem 8 is trivial. The proof of the other direction

(i) ⇒ (ii) covers the rest of this section. Consider x, x1, x2 ∈ M such that x = x1x2.

We present x by its pomset [V,≤, λ] and we let a1 < · · · < aq be the linearly

ordered subset of all vertices in V which have a label in the thin clan A ∪ A. We

define p to be the index such that a1, . . . , ap ∈ x1 and ap+1, . . . , aq ∈ x2. We have

0 ≤ p ≤ q. The values of p and q are fixed until the end of this section. We allow

q = 0 although this case is trivial. However even if p = 0 or p = q then we might

have nf(x) 6= nf(x1) nf(x2), c.f. Example 6 above with x2 = b.

Above we have introduced the notion of global position. In order to determine

how nf(x) can be obtained from nf(x1), nf(x2), we define the notion of local position,

too. The local position `(v) is the global position of v in x1, if v belongs to x1. If v

belongs to x2, then `(v) is the global position of v in x2 plus p, since we define `(v)

in x. More formally, suppose that v is in x1. With respect to x1, the target point

t′(v) of v is min{p+ 1, t(v)}, hence we define:

`(v) = m(s(v),min{p+ 1, t(v)}) .
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Similarly, if v belongs to x2 then the source point s′(v) of v with respect to x2 is

s′(v) = max{s(v), p} and we define:

`(v) = m(max{s(v), p}, t(v)) .

The next lemma summarizes some direct consequences of the definition of global

and local positions. The proof is omitted.

Lemma 9. Let x = x1x2 ∈ M with value p as above and let v, v′ be vertices in

x = [V,≤, λ].

(1) For v ≤ v′ we have s(v) ≤ s(v′), t(v) ≤ t(v′), g(v) ≤ g(v′), and `(v) ≤ `(v′).

(2) For v ∈ x1 we have `(v) ≤ g(v) and `(v) ≤ p+ 1/2.

(3) For v ∈ x2 we have g(v) ≤ `(v) and p+ 1/2 ≤ `(v).

(4) For `(v) 6= g(v) we have s(v) ≤ p < t(v).

The next proposition is a crucial technical result. It shows that among the

vertices v with s(v) ≤ p < t(v), i.e., among the vertices where the local and global

positions may differ, there is a few number of different source points. For a given

trace x ∈ M we define

S = {s(v) | s(v) ≤ p < t(v), v ∈ x}.

Proposition 10. Let x ∈ M and S be defined as above. Then we have |S| ≤ τ +1.

Proof. We may assume that |S| ≥ 2. Choose a sequence b1, . . . , bk, bk+1 ∈ x with

k minimal such that S = {s(bi) | 1 ≤ i ≤ k + 1}. We may assume that 0 ≤ s(b1) <

· · · < s(bk) < p and p < t(bi) for 1 ≤ i ≤ k. Hence we have bi ‖ ap for all 1 ≤ i ≤ k

(see also Figure 1 below). We will see that k ≤ τ . For each 2 ≤ i ≤ k we choose

a path from as(bi) to bi in the dependence graph of x. On this path we pick a last

vertex ci with ci ≤ ap. This vertex is not bi. Hence, there is a next vertex di with

(ci, di) ∈ D, ci < di ≤ bi, and di ‖ ap for 2 ≤ i ≤ k. We choose d1 = b1. We

claim that {di}×{ci+1, . . . , ck} ⊆ I for 1 ≤ i ≤ k. Indeed, assume by contradiction

that (di, cj) ∈ D for some i < j ≤ k. If we would have cj ≤ di, then we obtain

as(bj) ≤ cj ≤ di ≤ bi, but this contradicts s(bi) < s(bj). Hence di ≤ cj . But we have

cj ≤ ap, hence di ≤ ap in contradiction to di ‖ ap. This yields the claim.

ci di bi
∗ ∗

as(bi)

ap

+

Fig. 1.
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Next, (di, ci) ∈ D and {di} × {ci+1, . . . , ck} ⊆ I imply that ci and cj are in

different thin clans for all 2 ≤ i < j ≤ k. Moreover, there is another thin clan

containing d1.

Analogously to Proposition 10 we have |T | ≤ τ + 1, where T is the set of target

points: T = {t(v) | s(v) ≤ p < t(v), v ∈ x}.

The set of cutting points C is defined to be the union C = Cg∪C`∪{0, p+
1
2 , q+1},

where

Cg = {g(v) | s(v) ≤ p < t(v), v ∈ x},

C` = {`(v) | s(v) ≤ p < t(v), v ∈ x}.

Proposition 11. The number of cutting points is bounded by τ 2 + 4τ + 6.

Proof. We have Cg ⊆ {m(s, t) | s ∈ S, t ∈ T}. Hence |Cg | ≤ (τ + 1)2 by Proposi-

tion 10 and the analogous statement for T . For C` we can write C` ⊆ {m(s, p+1) |

s ∈ S} ∪ {m(p, t) | t ∈ T}. Hence |C`| ≤ 2τ + 2.

The cutting points split the real interval [0, q+1] into open intervals of the form

(i, j) where i, j ∈ C, i < j, and (i, j) ∩ C = ∅. There are |C| − 1 such intervals, so

the number is at most τ2 + 4τ + 5. With each interval (i, j) we associate a factor

trace of x. The factor trace is denoted either x[0; i, j] or x[3; i, j]; we call x[m; i, j],

0 ≤ m ≤ 3, a segment. (Later on we will define segments with index 1 and 2.) Since

p + 1
2 is a cutting point we have either j ≤ p + 1

2 or p + 1
2 ≤ i. For j ≤ p + 1

2 we

define

x[0; i, j] = {v ∈ x | i < g(v) ≤ j and t(v) ≤ p}.

For p+ 1
2 ≤ i we define

x[3; i, j] = {v ∈ x | i ≤ g(v) < j and p < s(v)}.

Note that we have `(v) = g(v) for all v ∈ x[0; i, j] or v ∈ x[3; i, j]. A segment as

defined above is just a set of vertices of x. However, by Lemma 2 it is easy to see

that a segment defines a factor trace of x and a factor trace of either x1 or x2.

In the lemma below, we show that this property is still true for the normal forms

nf(x), nf(x1), nf(x2).

Lemma 12. The segments x[0; i, j] and x[3; i, j] define factor traces y of nf(x). If

j ≤ p+ 1
2 , then x[0; i, j] also defines a factor trace y1 of nf(x1) and we have y = y1

in M̂. If p+ 1
2 ≤ i, then x[3; i, j] also defines a factor trace y2 of nf(x2) and we have

y = y2 in M̂.

Proof. By symmetry we may assume j ≤ p + 1
2 . We first show that x[0; i, j] is a

factor trace of both nf(x), nf(x1). Assume that u < v < w either in nf(x) or in

nf(x1), with u,w ∈ x[0; i, j]. Thus, we have i < g(u) = `(u) ≤ j and i < g(w) =



October 19, 2005 To appear: International Journal of Algebra and Computation

10 Diekert and Muscholl

`(w) ≤ j. By Lemma 9 we obtain i < g(v) = `(v) ≤ j, using that u < v < w in

either nf(x) or nf(x1). Thus, if t(v) ≤ p, then x[0; i, j] is a factor trace.

Assume otherwise that we have t(v) > p. In addition, we have also s(v) ≤ p,

because otherwise p + 1 ≤ g(v). But g(v) ≤ g(w) ≤ p. Thus, g(v) and `(v) are

cutting points. Since t(w) ≤ p < t(v), the arc from v to w must be a new arc. If

v → w is a new (global) arc in nf(x), then i < g(u) ≤ g(v) < g(w) ≤ j. If v → w

is a new (local) arc in nf(x1), then i < `(u) ≤ `(v) < `(w) ≤ j. In both cases we

obtain a contradiction since the open interval (i, j) does not contain any cutting

point. Hence x[0; i, j] defines a factor trace y of nf(x) and a factor trace y1 of nf(x1).

We have y = y1 in M̂ since `(v) = g(v) for all v with t(v) ≤ p.

The segments x[0; i, j] and x[3; i, j] are pairwise disjoint subsets of x, but they

do not cover x, in general. The missing points are those vertices v where s(v) ≤ p <

t(v). Therefore for each m = 1, 2 and i ≤ p < j we define an m-segment by:

x[m; i, j] = {v ∈ xm | s(v) = i and t(v) = j} , m = 1, 2 .

Note that segments are non empty, only if (i, j) ∈ S × T . The total number of

non empty 1 and 2 segments is therefore at most 2(τ + 1)2 = 2τ2 + 4τ + 2 by

Proposition 10. Moreover, all vertices v ∈ x[m; i, j] have the same local position

`(v) and they have the same global position g(v), which are both cutting points. Of

course, `(v) 6= g(v) is possible.

Lemma 13. Each m-segment x[m; i, j], m = 1, 2 defines a factor trace y of nf(x)

and a factor trace ym of nf(xm). We have y = ym in M̂.

Proof. Consider vertices u, v, w ∈ x = [V,≤, λ] with u,w ∈ x[m; i, j]. Assume that

nf(x) (or nf(xm), resp.) contains a path from u to w via v. Since `(u) = `(w) and

g(u) = g(w), by Lemma 3 we note that the path cannot use any new arc. Hence,

the path is already present in x = [V,≤, λ]. Since x[m; i, j] is a factor trace of both

x and xm, we see that x[m; i, j] is also a factor trace of both nf(x) and nf(xm).

Moreover, y = ym in M̂ is also clear, since there are no new arcs in x[m; i, j].

Let us summarize the notations we have introduced up to this point. For each

m = 0, 1, 2, 3 we have defined m-segments of the form x[m; i, j] which are pairwise

disjoint subsets of x and cover x. Hence F = {x[m; i, j] | x[m; i, j] 6= ∅} is a partition

of the set x. Each x[m; i, j] with m ≤ 1 is a factor trace of both nf(x) and nf(x1)

(respectively, each x[m; i, j] with m > 1 is a factor trace of both nf(x) and nf(x2)).

By Propositions 10 and 11 we have |F | ≤ 3τ 2 + 8τ + 7. Thus, we can choose the

value d in Theorem 8 such that d = |F |.

By Lemma 12 and 13 we denote by yf ∈ M̂ the factor trace of nf(x) associated

with f ∈ F . Since the segments in F cover all of nf(x), nf(x1) and nf(x2), it remains

to show how to write nf(x), nf(x1) and nf(x2) as products of yf , where f ranges

over F . For this we have to compare segments. Every segment is associated with

either a pair of consecutive cutting points or a single cutting point. For a non-empty
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m-segment f = x[m; i, j] we define a global weight ωg(f) and a local weight ω`(f) as

follows. For m ∈ {0, 3} let ωg(f) = ω`(f) = i+j
2 , which is the center of the half-open

interval associated with f . For m ∈ {1, 2} let ωg(f) = g(v) and ω`(f) = `(v) for

some v ∈ f . Recall that all v ∈ f in this case have the same global position and the

same local position.

We endow the set F of m-segments, m ∈ {0, 1, 2, 3} with a global total order vg

and a local total order v`. In the following let h ∈ {g, `}, so h refers either to the

global or to the local situation.

For f = x[m; i, j], f ′ = x[m′; i′, j′] we write f vh f ′ if one of the following

conditions holds:

(1) ωh(f) < ωh(f ′).

(2) ωh(f) = ωh(f ′), and m < m′.

(3) ωh(f) = ωh(f ′), m = m′, and i < i′.

(4) ωh(f) = ωh(f ′), m = m′, i = i′, and j ≤ j′.

It is clear that vg and v` are both total orders. The next proposition has

several important consequences. For example, it implies that vg and v` are both

linearizations of the partial order ≤ of x.

Proposition 14. Let v, v′ ∈ x be vertices such that v ∈ f = x[m; i, j] and v′ ∈

f ′ = x[m′; i′, j′], where f, f ′ ∈ F . Then we have:

• If v ≤ v′ or g(v) < g(v′) holds, then f vg f
′.

• If v ≤ v′ or `(v) < `(v′) holds, then f v` f
′.

Proof. We assume that v 6= v′ and f 6= f ′. We distinguish several cases, depending

on the values of m,m′. Recall from Lemma 9 that v ≤ v′ implies h(v) ≤ h(v′),

where as above, h means either g or `. It is of course possible that v < v′ and

h(v) = h(v′).

(1) Let m,m′ ∈ {0, 3}. The case m = 3, m′ = 0 means h(v′) < h(v), so it cannot

occur. Hence m ≤ m′. We note that h(v) ≤ h(v′), together with i, j and i′, j′

being consecutive cutting points, implies that i ≤ i′ and j ≤ j′. Hence, ωh(f) =
i+j
2 ≤ ωh(f ′) = i′+j′

2 . If ωh(f) < ωh(f ′), then we are done. Otherwise, if we

have also m = m′, then i ≤ i′ and j ≤ j′. Thus, in all cases f vh f
′.

(2) Let m = 0 and m′ ∈ {1, 2}. Since h(v′) ∈ C and i, j are consecutive cutting

points we have i < h(v) ≤ j ≤ h(v′), hence ωh(f) = i+j
2 < h(v′) = ωh(f ′).

(3) Let m,m′ ∈ {1, 2} and m ≤ m′. Then we have ωh(f) = h(v) ≤ h(v′) = ωh(f ′).

If h(v) = h(v′), then we must have v ≤ v′ by the assumption of the proposition.

Thus, Lemma 9 yields i ≤ i′ and j ≤ j′.

(4) Let m = 2 and m′ = 1. Clearly, we cannot have v ≤ v′, thus h(v) < h(v′) holds,

hence also ωh(f) < ωh(f ′).

(5) Letm ∈ {1, 2} andm′ = 3. Then, dual to the second case, h(v) ≤ i′ ≤ h(v′) < j,

thus ωh(f) = h(v) < i′+j′

2 = ωh(f ′).
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(6) Let m ∈ {1, 2} and m′ = 0. Clearly, we cannot have v ≤ v′, hence we must have

h(v) < h(v′). Since i′, j′ are consecutive cutting points we infer that h(v) ≤

i′ < h(v′) ≤ j′, hence ωh(f) = h(v) < ωh(f ′) = i′+j′

2 .

(7) Let m = 3 and m′ ∈ {1, 2}. As above, we must have h(v) < h(v′). Since i, j are

consecutive cutting points, we obtain, similarly to the first case, i ≤ h(v) < j ≤

h(v′). Thus ωh(f) = i+j

2 < h(v′) = ωh(f ′).

Corollary 15. Let F = {f1, . . . , fd} be sorted such that fi vg fi+1 for all i and let

yi = yfi
be the associated factors of nf(x). Then we have nf(x) = y1 · · · yd.

Proof. Let v, v′ ∈ nf(x) with v ∈ fi and v′ ∈ fj such that there is an arc from v

to v′ in the dependence graph of nf(x). We have to show that i ≤ j. We know that

v < v′ (if it is an old arc) or g(v) < g(v′) (if it is a new arc). By Proposition 14 we

obtain fi vg fj , which is equivalent to i ≤ j.

Corollary 16. Let F = {f1, . . . , fd} be sorted such that fi v` fi+1 for all i and let

yi = yfi
be the associated factors of nf(x). Then there exists some c with 0 ≤ c ≤ d

satisfying

nf(x1) = y1 · · · yc and nf(x2) = yc+1 · · · yd .

Proof. We begin with the following observation. Let f, f ′ ∈ F with f = x[m; i, j],

f ′ = x[m′; i′, j′] and m ∈ {0, 1}, m′ ∈ {2, 3}. Then ω`(f) ≤ p + 1
2 ≤ ω`(f

′), hence

f v` f
′. Therefore in our v`-sorted sequence there is some c with 0 ≤ c ≤ d such

that yi ⊆ nf(x1) if and only if i ≤ c for all 1 ≤ i ≤ d. It remains to show that

y1 · · · yc = nf(x1) and yc+1 · · · yd = nf(x2). This part is identical to the proof of

Corollary 15 with the local view instead of the global one.

Another immediate consequence of Proposition 14 is the following statement.

Corollary 17. Let f, f ′ ∈ F , f 6= f ′, be segments such that f v` f
′. Then f ′ vg f

implies alph(yf ) × alph(yf ′) ⊆ I.

For the final step we consider the normal forms of x, x1, x2 and express them as

products of factor traces yf associated with segments f ∈ F . We sort F such that

f1 v` · · · v` fd. Let π ∈ Perm(d) be the permutation such that fπ(1) vg · · · vg fπ(d)

is sorted with respect to vg. By Corollary 17 we have alph(yi) × alph(yj) ⊆ I

whenever (i− j)(π(i) − π(j)) < 0. (As above, yi is the factor trace associated with

fi ∈ F .) This completes the proof of Theorems 8.

Example 18. Let Γ = {a, a, b, b, c, c} with (a, b) ∈ I and (a, c), (b, c) ∈ D. Consider

the thin clan {a, a} and the situation given by Figure 2, i.e., x = x1x2 with x1 =

a aa a a b b c a a b, x2 = a a a b b c aa a a b b and p = 7, q = 14.
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x2

f2 = [0;5.5,7,5]

f3 = [1;5,11]

f4 = [3;7.5,9.5]

f5 = [2;5,11]

f6 = [3;9.5,15]

a aa

b b

a ca a

x1

b

a a

b b

a a aa

b b

a

f1 = [0;0,5.5]

ca

Fig. 2.

We list first the global and local positions of all b, b:

bi 1 2 3 4 5 6 7

`(bi) 3.5 3.5 5.5 9.5 9.5 12.5 12.5

g(bi) 3.5 3.5 7.5 7.5 7.5 12.5 12.5

For instance, let v be the first b (or b, resp.) in this example. Then, s(v) = 0,

t(v) = 6, and g(v) = m(s(v), t(v)) = 3.5.

We have as cutting points C = {0, 5.5, 7.5, 9.5, 15}. The 0-segments are f1 =

[0; 0, 5.5], and f2 = [0; 5.5, 7.5]. The 3-segments are f4 = [3; 7.5, 9.5] and f6 =

[3; 9.5, 15]. We have one 1-segment f3 = [1; 5, 11] and one 2-segment f5 = [2; 5, 11].

The local and global weights are as follow:

fi 1 2 3 4 5 6

ω`(fi)
11
4

13
2

11
2

17
2

19
2

49
4

ωg(fi)
11
4

13
2

15
2

17
2

15
2

49
4

In the example the segments f3 and f5 have the same global weight, but f3

will appear before f5 in the sorted sequences of F . The normal form nf(x) will

correspond to f1f2f3f4f5f6, whereas nf(x1) is f1f3f2 and nf(x2) is f4f5f6. We also

have alph(f2f4) × alph(f3f5) ⊆ I .

4. The existential theory of trace monoids with involution

For a moment let (M, ) be any finitely generated monoid with involution generated

by Γ, and let ψ : Γ∗ → M be a surjective homomorphism (which respects the

involution). Let Ω be a set of variables (or unknowns) together with an involution

without fixed points : Ω → Ω. Let C be a family of subsets of M which we call

constraints.
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The existential theory of equations with C-constraints in the monoidM is defined

as follows. Atomic formulae are either of the form α = β, where α, β ∈ (Γ ∪ Ω)∗

or of the form X ∈ C, where X is in Ω and C ⊆ M belongs to the family C.

An existentially quantified formula is a block of existentially quantified variables

followed by a Boolean combination of atomic formulae. It is closed, if there are no

free variables. A closed formula is also called a sentence. If the interpretation of a

variable X is m ∈M , then the interpretation of X must be m ∈ M . The existential

theory of equations with C-constraints in M is the set of all existentially quantified

sentences which are true in M .

A subset L ⊆ M is called recognizable, if ψ−1(L) is a regular word language in

the usual sense of automata theory. Languages of the form ψ(L) are called rational,

if L ⊆ Γ∗ is regular. They can also be defined by regular (or rational) expressions.

Kleene’s Theorem states that in Γ∗ the classes of rational and recognizable lan-

guages coincide, so we call them regular for simplicity. However, in general, the

class of rational languages is strictly larger than the one of recognizable languages.

In particular, if M is a trace monoid with (a, b) ∈ I , then (ab)∗ ⊆ M is rational, but

not recognizable since ψ−1((ab)∗) is the set of words with an equal number of a and

b. If G is an infinite group, then the singleton {1} is rational, but not recognizable

because a subgroup is recognizable if and only if it is of finite index.

In this section we use recognizable trace languages as constraints. As before, ψ

means the canonical homomorphism from words to traces, thus ψ : Γ∗ → M and

M = M(Γ, I) is a trace monoid with involution. If not stated otherwise we assume

that a recognizable trace language is specified by some I-diamond NFA A, where

NFA means non-deterministic finite automaton and the I-diamond property means

that for all states p, q of A and all pairs (a, b) ∈ I there is a path from p to q

labeled by ab if and only if there is a path from p to q labeled by ba. Such an NFA

recognizes a a regular language K ⊆ Γ∗ with ψ−1(ψ(K)) = K, hence it defines a

recognizable trace language ψ(K) ⊆ M. In Section 6 we show that we can start with

constraints that are presented in lexicographical normal form, which is sometimes

a more compact specification of recognizable constraints.

Definition 19. Let ETMI denote the following decision problem:

INPUT: A graph (Γ, I, ) and an existentially quantified sentence with recogniz-

able constraints in a trace monoid with involution M = M(Γ, I).

QUESTION: Is the sentence true in M?

The proof of the following statement is the main contribution of the paper.

Theorem 20. The following assertions hold.

(i) The problem ETMI is Pspace–hard.

(ii) There exist a constant k and a polynomial q(x) such that the problem ETMI

can be solved in space τkτ · q(n), where n denotes the length of the input and

τ is the number of thin clans, τ = τ(Γ, D). In particular, it can be solved in

ExpSpace.
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Corollary 21. If the input to the problem ETMI is restricted such that the param-

eter τ is bounded by some constant, then the problem is Pspace–complete.

The Pspace–hardness follows directly from a result of Kozen [16], since the

empty intersection problem of regular sets is a special instance of the problem

ETMI restricted to inputs with τ = 0. So we do not discuss Pspace–hardness in

the proofs of Theorem 20 and Corollary 21 anymore.

Moreover, for inputs with τ = 0 the assertions of Theorem 20 and Corollary 21

follow by [6], since τ = 0 is exactly the case of free monoids with involution. The

road map is therefore as follows. We assume that the input satisfies τ > 1. (The

case τ = 1 does not exist.) Then we reduce it non-deterministically to the case at

most τ − 1 in such a way that the input size n is increased at most by factor p(τ),

where p(x) is some fixed polynomial. The degree of p is actually quadratic, only. So

for some (small) constant k′ we reach the situation τ = 0 with an input of size at

most τk′τ · n. Then we apply the polynomially space bounded algorithm of [6] in

order to get a non-deterministic algorithm using space at most τ kτ · q(n).

The reduction is done stepwise. Let Φ be the input to the problem ETMI.

Step 1: Using De Morgan’s laws we may assume that there are no negations at

all and that the atomic formulae of Φ are of either form: α = β, α 6= β, X ∈ L, or

X 6∈ L, where L is a recognizable trace language.

A formula min(X) 6= min(Y ) stands for
∨

a∈Γ

(
(X ∈ aM ∧ Y /∈ aM) ∨ (X 6∈ aM ∧ Y ∈ aM)

)
.

With the help of this macro we can replace an inequality α 6= β by the equivalent

formula ∃Z∃X∃Y : α = ZX ∧ β = ZY ∧ min(X) 6= min(Y ).

However, there is a general, more space efficient strategy we are following here:

we can avoid disjunctions by making non-deterministic guesses. In particular, in-

stead of writing the macro min(X) 6= min(Y ) we guess the corresponding letter a

and and one side in the disjunction (X ∈ aM ∧ Y /∈ aM) ∨ (X 6∈ aM ∧ Y ∈ aM).

After the first phase we may therefore assume that Φ is an existentially quantified

sentence over a conjunction of atomic formulae of either form: α = β, X ∈ L, or

X 6∈ L.

Step 2: We reduce to the case that the involution is without fixed points.

Assume that the set of fixed points ∆ = {a ∈ Γ | a = a} is not empty. (Otherwise

we skip this step.)

Let ∆′ be a disjoint copy of ∆, and let Γ′ = Γ ∪ ∆′. For each a ∈ ∆ we define

a = a′ and a′ = a. It is clear how to extend I to I ′ such that I ′ is compatible

with the involution, and M′ becomes a trace monoid where the involution on Γ′ has

no fixed points. We define a homomorphism ι : M → M′ by ι(a) = aa′ for a ∈ ∆

and ι(a) = a for a ∈ Γ \ ∆. There is also a projection π : M′ → M, defined by

erasing all a′ ∈ ∆′. Obviously, πι(x) = x, hence ι(x) = ι(y) in M′ implies x = y

in M, hence ι is injective. Since aa′ = (aa′) we have ι(x) = ι(x) for all x ∈ M and
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π(x) = π(x) for all x ∈ ι(M). Moreover, if L ⊆ M is recognizable, then ι(L) ⊆ M′

is also recognizable. Indeed, ι(L) = π−1(L)∩ ι(M). For the specification of π−1(L)

we may use the same automaton as for L by adding self-loops labeled by letters

from ∆′. This automaton is again I-diamond.

It remains to see that ι(M) is recognizable. In order to avoid a state explosion

we do not use a single automaton, but we write ι(M) as an intersection of at most

|∆| recognizable sets: For each a ∈ ∆ we have an automaton Ma consisting of two

states, pa, qa, with pa being initial and final. There is a transition from pa to qa
labeled by a, and one from qa to pa labeled by a′. Moreover, pa has self-loops labeled

by c for every c ∈ Γ′ \ {a, a′}, and qa has self-loops labeled by d, for every d with

(a, d) ∈ I . Then ι(M) =
⋂

a∈∆L(Ma).

We transform the sentence Φ as follows: Each subformula of the form ∃Xϕ

is replaced by ∃X(
∧

a∈∆X ∈ L(Ma) ∧ ϕ), each constant a ∈ ∆ appearing in

an equation is replaced by aa′ and finally each constraint X ∈ L is replaced by∧
a∈∆X ∈ L(Ma) ∧X ∈ π−1(L).

We obtain a sentence Φ′ over M′ which has the same truth value as the sentence

Φ after Step 1. The length of Φ′ is at most polynomial in the length of Φ, but the

switch from Γ to Γ′ did not increase the number of thin clans. So, since this step is

not repeated, we may in fact we assume that Γ = Γ′. The sentence Φ′ is denoted

by Φ again.

After Step 2 we are in the following situation: Φ is an existentially quantified

sentence of a conjunction over equations and recognizable constraints, and the in-

volution : Γ → Γ has no fixed points, i.e., a 6= a for all a ∈ Γ. Moreover, we

may assume that all equations of Φ are in triangulated form, X = X1X2 with

X,X1, X2 ∈ Γ ∪ Ω.

Step 3: This step is repeated until τ = 0.

We choose some thin clan in (Γ, D). As in the previous section we write the clan

in the form A∪A with A∩A = ∅. We define D̂ = D∪Γ× (A∪A)∪ (A∪A)×Γ and

Î = Γ × Γ \ D̂. Recall that M̂ = M(Γ, Î) is a trace monoid with involution, where

the number of thin clans in (Γ, D̂) is at most τ − 1.

Let ψ̂ mean the canonical homomorphism ψ̂ : M̂ → M. We transform non-

deterministically Φ into some sentence Φ̂ over M̂. The handling of recognizable

constraints is trivial: A constraint X ∈ L (X /∈ L resp.) is replaced by X ∈ ψ̂−1(L)

(X /∈ ψ̂−1(L) resp.). The same I-diamond automaton as for L serves also for ψ̂−1(L)

since it is Î-diamond.

For a replacement of an equation X = X1X2 we make several non-deterministic

guesses. We guess some d ≤ 3τ 2+8τ+7 and we choose d new, existentially quantified

variables Y1, . . . , Yd. We guess a permutation π ∈ Perm(d) and some c with 0 ≤ c ≤

d. Now, X = X1X2 is replaced by the following system of equations and constraints.

X = Yπ(1) . . . Yπ(d),

X1 = Y1 . . . Yc,
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X2 = Yc+1 . . . Yd,

Yi × Yj ⊆ I for all i, j, where (i− j)(π(i) − π(j)) < 0.

Here, a formula X × Y ⊆ I stands for
∧

a∈Γ

(X ∈ (Γ \ {a})∗ ∨ Y ∈ I(a)∗).

A formula as above is called a commutation constraint. If I = ∅, then the macro

means nothing but X ∈ {1} ∨ Y ∈ {1}.

In fact, we make again guesses, so instead of writing a commutation constraint we

actually write down a conjunction of purely alphabetic constraints of type Y ∈ B∗

with B ⊆ Γ. The system of equations can be triangulated, so that we end up

with a form where we can repeat Step 3. The correctness of Step 3 is a direct

consequence of Theorem 8. It remains to analyze the space requirement after all

loops of Step 3. At the end all constraints are purely alphabetic or of the form

X ∈ ψ−1(L) (X /∈ ψ−1(L) resp.) where L is a constraint in the form after Step

2. The number of new alphabetic constraints is bounded by the number of new

variables since a conjunction of alphabetic constraints can be written as a single

alphabetic constraint.

The system of equations is triangulated, so it is enough to calculate the number

of equations. After triangulation each equation is replaced by 2d new equations, so

the upper bound is the polynomial p(τ) = 6τ 2 +16τ+14. Clearly for some constant

k we have
∏τ

i=2 p(i) ≤ τkτ . This shows Theorem 20 and Corollary 21.

The result of Theorem 20 cannot be extended to rational constraints due to the

following fact which we state for sake of completeness.

Theorem 22. [22,7] The existential theory of equations with rational constraints

in M is decidable if and only if M is a free product of free commutative monoids.

5. Equations over graph groups

5.1. Elementary properties of graph groups

Graph groups (or free partially commutative groups) arise at many places in math-

ematics and they are well-studied objects under various names, see e.g. [2,4]. The

most standard approach is to define a graph group as the quotient group of a free

group by a partial commutation relation between generators. This is the usual set-

ting of graph groups as investigated by Droms in [12]. Our definition of a graph

group is slightly more general, since we allow that the involution has fixed points

and this leads to torsion elements of order 2.

We start with an alphabet with involution (Γ, ) and, as always, we assume that

the independence relation I ⊆ Γ × Γ is compatible with the involution. We define

the graph group G(Γ, I) by

M(Γ, I)/{aa = 1 | a ∈ Γ}.
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This is a group, since a = a. The canonical homomorphism is denoted by ϕ :

M(Γ, I) → G(Γ, I). If the reference to (Γ, I) is clear, we write G instead of G(Γ, I).

A trace x ∈ M is called reduced, if it does not contain any factor of the form aa

with a ∈ Γ. It is well-known and easy to verify that every group element x ∈ G has

a unique reduced representation. This means there is a unique reduced trace x̃ ∈ M

such that ϕ(x̃) = x.

We have the following basic lemma.

Lemma 23. Let x̃, ỹ, z̃ ∈ M be reduced traces representing the group elements

x, y, z ∈ G. Then we have xy = z in G if and only if there are traces p, q, r ∈ M

such that x̃ = pq, ỹ = qr, and z̃ = pr.

Proof. Let xy = z in G and let q ∈ M be of maximal length such that we can

write x̃ = pq and ỹ = qr. Then we have z = pr in G. However, p and r are reduced.

Thus, if a factor aa occurs in pr, then a is a maximal letter in p and a is a minimal

letter in r. This is true, because (a, b) ∈ I implies (a, b) ∈ I . Since q is of maximal

length, the trace pr is reduced. Hence z̃ = pr. The other direction is trivial.

5.2. Normalized regular subsets

The set of all reduced traces is in one-to-one correspondence with G, and we have

a normal form mapping ρ : G → M, defined by ρ(x) = x̃.

Since ρ(G) is defined by some finite set of forbidden factors aa with a ∈ Γ,

it is a recognizable subset of M. A group language L ⊆ G is called normalized

regular (or normalized rational in [8]), if the set of normal forms ρ(L) ⊆ M is a

recognizable trace language. In particular, if A ⊆ Γ is a subset, then A∗ = {x ∈ G |

alph(x̃) ⊆ A} ⊆ G is normalized regular, because A∗ ∩ ρ(G) ⊆ M is recognizable.

Since ρ(G\L) = ρ(G)\ρ(L), the class of normalized regular languages is an effective

Boolean algebra.

If not stated otherwise, a normalized regular language L is given by an I-

diamond NFA accepting ρ(L).

If G is a free group, then every rational language is normalized regular. This

follows from [3]. In general, the class of normalized regular languages is strictly

contained in the class of rational subsets, since (ab)∗ ⊆ G is not normalized regular,

if (a, b) ∈ I , a 6= a, and b 6= b. On the other hand, all finite subsets are normal-

ized regular, hence if G is infinite, then the class of normalized regular languages

is strictly larger than the class of recognizable subsets. Thus, normalized regular

subsets form a class between recognizable and rational languages, and they are in

one-to-one correspondence with recognizable trace languages containing only re-

duced traces. Finally note that if L ⊆ M is recognizable then ϕ(L) need not be

normalized regular, in general. Take for example three letters a, b, c with (a, b) ∈ I ,

(a, c) ∈ D and (b, c) ∈ D. The trace language L = (acc̄b)∗ is recognizable. However,

ϕ(L) = (ab)∗ ⊆ G is not normalized regular, if a 6= a, and b 6= b.
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5.3. The existential theory of graph groups

Definition 24. Let ETGG denote the following decision problem:

INPUT: A graph (Γ, I, ) and an existentially quantified sentence with normal-

ized regular constraints in a graph group G = G(Γ, I).

QUESTION: Is the sentence true in G?

Theorem 25. The following assertions hold.

(i) The problem ETGG is Pspace–hard.

(ii) There exist a constant k and a polynomial q(x) such that the problem ETGG

can be solved in space τkτ · q(n), where n denotes the length of the input and

τ is the number of thin clans, τ = τ(Γ, I). In particular, it can be solved in

ExpSpace.

Corollary 26. If the input to the problem ETGG is restricted such that the param-

eter τ is bounded by some constant, then the problem becomes Pspace–complete.

The lower bounds (Pspace–hardness) in Theorem 25 and Corollary 26 follow

exactly the same way as in Theorem 20. For the upper bounds it is enough to show

the following proposition.

Proposition 27. There is a polynomial time reduction of Problem ETGG to Prob-

lem ETMI, which does not change the underlying graph (Γ, I).

Proof. The input to Problem ETGG is an existentially quantified sentence and

we ask whether it is true in the graph group G. We may assume that negations

appear only with atomic formulae. A formula of type α 6= β is equivalent with

∃X : αX = β ∧ X /∈ {1} (note that {1} is a normalized regular constraint). Hence

we may assume that there are negations only with normalized regular constraints.

As above, we may assume that all equations are of the form xy = z with x, y, z ∈

Γ ∪ Ω.

We transform the formula as follows. Each constraint X ∈ L (resp. X /∈ L) is

replaced by X ∈ ρ(L) (resp. X ∈ ρ(G) ∧ X /∈ ρ(L)). Note that the constraint

X ∈ ρ(G) can be expressed as the conjunction of |Γ| many constraints which forbid

the factors aa, a ∈ Γ. By Lemma 23 we can replace each equation xy = z by

∃P,Q,R : x = PR ∧ y = RQ ∧ z = PR.

We do not need any constraints for P , Q or R.

6. Constraints in lexicographical normal form

Two words representing the same trace have the same length. Fixing some linear

order on Γ we can choose for a given trace x ∈ M the lexicographical first word

representing x. This word is called the lexicographical normal form of x and it is de-

noted by lex(x) ∈ Γ∗. Clearly ψ(lex(x)) = x. It is well-known [1] that lex(M) ⊆ Γ∗
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is a regular word language. Hence, if L ⊆ M is recognizable, then ψ−1(L) ∩ lex(M)

is regular, too; and L is a homomorphic image of some regular subset of lex(M).

Ochmański’s Theorem says that this correspondence is one-to-one between recog-

nizable subsets of M and regular subsets of lex(M), see [23], [24, Thm. 6.3.12].

Hence, for the specification of a constraint (i.e., a recognizable trace language L)

we may use some NFA, where the accepted language is a subset of lex(M). Vice

versa, if the accepted language of an NFA is a subset of lex(M), then it specifies a

recognizable trace language. Note that the structure of an NFA accepting lexico-

graphical normal forms is quite different from an I-diamond automaton. If we start

with an I-diamond automaton we can use a simple product automaton construction

for ψ−1(L) ∩ lex(M). However, the size of a minimal NFA recognizing lex(M) can

be exponential in the size of the alphabet.

Example 28. Let Γ be an alphabet which contains 2n+1 letters with the following

ordering:

a1 < · · · < an < b1 · · · < bn < c.

Let the dependency among these letters be induced by (c, ai), (ai, bi) for all 1 ≤ i ≤

n. Then every NFA recognizing lex(M) has at least 2n states. Indeed, for a subset

J ⊆ {1, . . . , n} let AJ (resp. BJ) be the lexicographical normal form of the product

in over all aj (resp. bj) with j ∈ J . Consider an NFA recognizing lex(M) and let

pJ be the state on an accepting path for the word cAJBJ after reading the prefix

cAJ . If the automaton has less than 2n states, then pJ = pK for some J 6= K. We

may assume K \ J 6= ∅, but then the automaton accepts the word cAJBK which is

not in lexicographical normal form, hence a contradiction.

The reverse operation, starting with an NFA and constructing an I-diamond

automaton is more complicated, as we will see below.

In the following we assume that the total order chosen for Γ is compatible with

the clans of (Γ, D). More precisely, we choose < by ordering the clans and then

choosing some total order on each clan. With such an ordering it follows from

Proposition 29 that we can start with an existentially quantified sentence with

constraints in lexicographical normal form, and, still, the sentence can be evaluated

in ExpSpace.

Proposition 29. Let (Γ, I) be an independence alphabet with τ thin clans. Let A

be an NFA with s states such that L(A) ⊆ lex(M). Then we can build an I-diamond

NFA A′ with L(A′) = ψ−1(ψ(L(A))) and where the number of states is at most

τ2τs2τ2+1.

The proof of the previous proposition is based on a lemma that describes how

some linearization of a trace prefix y of x ∈ M fits into the lexicographical normal

form lex(x) of x.

Lemma 30. Let x ∈ M and let y be a prefix of x. Decompose lex(x) = v0u0 · · · vkuk

such that the positions of y in lex(x) correspond to the subword v0 · · · vk and k is
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minimal with this property. In particular, vi 6= 1 for all 0 < i ≤ k, ui 6= 1 for all

0 ≤ i < k, and (ui, vj) ∈ I for all i < j. Then we have k ≤ τ 2 − τ .

Proof. We may assume that τ > 0 and k > 0. Let Ai = I(vi · · · vk) for 0 < i ≤

k. Obviously, (Ai)i is a monotonically increasing sequence, Ai ⊆ Ai+1 for all i.

Moreover, A1 6= ∅ (since u0 6= 1) and Ak ( Γ. If Γ contains a thick clan, then it is

necessarily contained in Γ \Ak We split the sequence (Ai)i into:

A1 = · · · = Ai1 ( Ai1+1 = · · · = Ai2 ( · · · ( Aim−1+1 = · · · = Aim
= Ak.

We note that m ≤ τ . This is clear, because for 1 ≤ i ≤ im each Ai is a non-empty

union of thin clans. Next, assume that we have Ai = Ai+1 for some 1 ≤ i < k.

Let b be the first letter of vi and d be the first letter of vi+1. Note that neither

b nor d belong to any thick clan because A1 6= ∅. The only way the first position

in ui can be filled with some letter c is that we have b < c < d and c ∈ Ai. If b

and d belong to the same thin clan then there is no such c due to the choice of our

ordering. Hence, if Ai = Ai+1 = · · · = Aj , then j − i + 1 < τ , because the first

letters of vi, . . . , vj yield an ordered sequence of thin clans, all of them disjoint with

A1. Hence the claim of the lemma.

The proof of Proposition 29 follows now by defining the states of A′ as tuples

(p0, A1, q1, . . . , pk−1, Ak, qk, pk), where Ai ⊆ Γ (1 ≤ i ≤ k), pi (0 ≤ i ≤ k) and qi
(1 ≤ i ≤ k) are states of A and k ≤ τ 2 − τ as in Lemma 30. The idea is that A′

guesses an accepting run on lex(x), with Ai the alphabets defined in the proof of

that lemma, and pi, qi the states reached in the run after reading v0u0 · · · vi and

v0u0 · · · vi−1ui−1, respectively. Another way to see this is to replace in the sequence

v0u0 · · · vkuk each vi by qi, pi and each ui by Ai. We do not need to remember the

initial state q0. Moreover, it is enough to remember for each thin clan A the least i

such that A ⊆ Ai. Hence the number of states can be bounded by τ 2τ s2τ2+1. The

automaton A′ is I-diamond.

Corollary 31. The problems ETMI and ETGG are in ExpSpace (resp. Pspace,

if τ is bounded by some constant), even if the constraints for the input are given in

lexicographical normal form.

Remark 32. The reader may ask why we did not use lexicographical normal forms

already in Section 3. The reason is simple: if Γ contains letters a, b with (a, b) ∈ I ,

then the lexicographical normal form is not compatible with the involution. Indeed,

let (a, b) ∈ I and a < b, then we must have b < a or we are not compatible with the

involution. If b < a, then baa is in lexicographical normal form since (a, a) ∈ D, but

aab is not in lexicographical normal form. If a < b, then abb is in lexicographical

normal form, but bba is not in lexicographical normal form.
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