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Abstract. Signal Transition Graphs (STGs) are a popular formalism forthe specification of asyn-
chronous circuits. A necessary condition for the implementability of an STG is the existence of a
consistent and complete state encoding. For an important subclass of STGs, the marked graph STGs,
we show that checking consistency is polynomial, but checking the existence of a complete state
coding is co-NP-complete. In fact, co-NP-completeness already holds for acyclic and 1-bounded
marked graph STGs and for live and 1-bounded marked graph STGs. We add some relevant results
for free-choice, bounded, and general STGs.
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1. Introduction

Signal transition graphs (STGs) are a popular formalism for specifying asynchronous circuits [3, 12].
They are Petri nets in which the firing of a transition is interpreted as rising orfalling of a signal in
the circuit. Not every STG can be implemented as a physical circuit. A centralquestion related to
implementability of an STG is whether it admits a so-calledconsistentandcomplete state coding. Most
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papers in the literature consider only the completeness part, assuming that theSTG is already consistent,
and call the existence of a complete state coding theCSC property. This property, and the stronger unique
state coding property (USC propertyfor short) have been studied in many papers (see e.g. [1, 9, 10, 11,
14, 16, 17]).

In this paper we reason about the computational complexity of deciding if a given STG has a consis-
tent and complete state coding, viewing the consistency problem separately.We obtain new results for
STGs whose underlying nets are marked graphs and free-choice nets;for completeness, we also sketch
some straightforward results for STGs with more general underlying nets (bounded or even arbitrary).

We first explore the consistency problem for marked graph STGs. In [7] a polynomial algorithm
was given to check consistency of live, bounded, and cyclic free-choice STGs, which include live and
bounded marked graph STGs as a subclass. Here we show that consistency is polynomial for arbitrary
marked graph STGs by means of a new algorithm based on linear programming.

A natural question is whether these polynomiality results also hold for the CSC or USC problems
(i.e., the problems of checking the CSC or USC properties), at least for theclass of live and 1-bounded
marked graph STGs. Our main result shows that both problems are co-NP-complete, and so that poly-
nomial algorithms are unlikely. This result explains why the algorithms of [1, 9,10, 11, 14, 16, 17]
have exponential runtime or can only decide some necessary or sufficient conditions for the CSC or USC
properties to hold. These algorithms are discussed in detail in the final section.

Our co-NP-completeness result is rather robust. We prove that the CSC and USC problems remain
co-NP-hard for 1-bounded and acyclic marked graph STGs, and thatthey remain in co-NP for arbitrary
marked graph STGs and for live and bounded free-choice STGs.

Moving to more general classes, we show that the consistency, CSC and USC problems are PSPACE-
complete for 1-bounded STGs, and that the consistency problem remains PSPACE-hard in the free-
choice case. Finally, we clarify the relation between the consistency, USC and CSC problems for general
STGs, and the fireability and reachability problems for general Petri nets.

The paper is structured as follows. Section 2 presents basic definitions and a characterization of
consistency. Section 3 presents the results about marked-graph STGs;it is the core of the paper. Section 4
deals with free-choice and Section 5 with general STGs. Section 6 containsconclusions and discusses
related work.
Remark.A preliminary version of this paper appeared as the conference paper [8].

2. Basic definitions

A net is a triple(P, T, F ), whereP andT are disjoint sets ofplacesandtransitions, respectively, and
F is a function(P × T ) ∪ (T × P ) → {0, 1}. Places and transitions are generically callednodes; we
also note that a net can be viewed as a (bipartite) graph. Places are graphically represented as circles;
transitions are usually drawn like boxes, but we just use their labels in the figures. IfF (x, y) = 1 then
we say that there is anarc from x to y. Thepresetof a nodex, denoted by•x, is the set of itsinput nodes,
i.e., the set{y ∈ P ∪ T | F (y, x) = 1}. Thepostsetof x, denoted byx•, contains itsoutput nodes, i.e.,
the set{y ∈ P ∪ T | F (x, y) = 1}.

A markingM of a net(P, T, F ) is a mappingP → IN (whereIN denotes the set of natural numbers
including 0). Graphically, a marking is represented by drawingM(p) tokens on the circle representing
the placep. A markingM enablesa transitiont if it puts at least one token on each placep ∈ •t, i.e.,
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if M(p) ≥ 1 for eachp ∈ •t. If t is enabled atM , then it canfire (or occur) and its firing (occurrence)
leads toa new markingM ′, obtained by removing a token from each place in the preset oft, and adding

a token to each place in its postset; formally,M ′(p) = M(p)+F (t, p)−F (p, t) for every placep. M
t
−→

denotes thatt is enabled atM , andM
t
−→M ′ moreover denotes that firingt leads toM ′.

The notationM
σ

−→, M
σ
−→M ′ is extended to finite sequencesσ ∈ T ∗ in the natural way. When

M
σ
−→M ′, for σ = t1t2 · · · tn, we speak of anoccurrence sequence fromM to M ′, meaning the se-

quence

M
t1−−→M1

t2−−→· · ·Mn−1
tn−−→M ′

By the Parikh vectorof σ ∈ T ∗, denoted by~σ or P (σ), we mean the mapping (or the corresponding
vector)T → IN such that~σ(t) is the number of occurrences oft in σ.

The incidence matrixof N is the matrixCN : P ×T → {−1, 0, +1} given byCN (p, t) = F (t, p)−
F (p, t). We note that ifM

σ
−→M ′ thenM + CN · ~σ = M ′.

A Petri netis a pair(N, M0) whereN is a net andM0 is a marking ofN , called theinitial marking.
A markingM is calledreachableif there exists an occurrence sequence fromM0 to M ; we also denote
this byM0 −→

∗ M . We call
M0 + CN · X ≥ 0

themarking inequation. We note thatM0
σ
−→M impliesM0 + CN · ~σ = M ; ~σ is thus a (nonnegative

integer) solution of the marking inequation.
A marking M of a netN is n-boundedif M(p) ≤ n for every placep. A Petri net(N, M0) is

n-bounded if all its reachable markings aren-bounded.

A transitiont is fireablein (N, M0) if there isσ such thatM0
σ
−→M andM

t
−→. A Petri net(N, M0)

is live if each transitiont is fireable in(N, M) for eachM reachable fromM0. A transition isdeadat a
markingM if t is not fireable in(N, M).

A net N is called amarked graphif every place has at most one input and at most one output
transition.N = (P, T, F ) is a free-choicenet if: for each placep and every transitiont, if F (p, t) = 1
thenF (p′, t′) = 1 for everyp′ ∈ •t, t′ ∈ p•. In a free-choice net, if some output transition of a place
is enabled at a marking, then all its output transitions are enabled, and it is possible to “freely” choose
among them.

Signal transition graphs. Let A = {a1, . . . , an} be a set (alphabet) ofsignalspartitioned intoinput
andoutputsignals. Rising and falling of a signala is denoted bya+ anda−, respectively. (In some proofs
we also use the notation+a and−a, which is more convenient for using sub- and superscripts.) We call
an element ofL = A × {+,−} a label. A signal transition graph(STG) is a tripleS = (N, M0, ℓ),
where(N, M0) is a Petri net andℓ is a labelling functionthat assigns to each transition ofN a label in
L.

A signal transition graph is a specification of the behaviour of the circuit under some assumptions
on the environment. An STGS is implementable if there exists astate coding mappingλ (we also
use the termbinary encoding) that associates with each reachable markingM a vector ofsignal values
λ(M) ∈ {0, 1}n satisfying the following two properties:

(1) Consistency. If M
t
−→M ′ andt is labelled bya+

i , then thei-th components ofλ(M) andλ(M ′)
are0 and1, respectively, and all other components have the same value inλ(M) andλ(M ′). If t
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is labelled bya−i , then thei-th components ofλ(M) andλ(M ′) are1 and0, respectively, and all
other components have the same value inλ(M) andλ(M ′).

(2) Completeness: if two different reachable markingsM , M ′ satisfyλ(M) = λ(M ′), then they
enable exactly the same output labels.

Consistency is obviously necessary for implementability. Completeness is necessary because the state
of an implementation is completely determined by the signal values of all signals. Therefore, if some
output signal is enabled atM but not atM ′, thenM andM ′ must correspond to different states of the
implementation, and so they must differ in the value of at least one signal.

We define theconsistency problemas the problem of deciding if a given STG is consistent, i.e., if it
admits a binary encodingλ satisfying (1). The Complete State Coding problem,CSC problemfor short,
is the problem to decide if a given STG (usually already assumed consistent)has theCSC property, i.e.,
admits a binary encoding satisfying (1) and (2). A stricter version is theUSC problem(unique state
coding) where we ask if a given STG has theUSC property, i.e., admits aninjectivebinary encodingλ
satisfying (1) (thusλ(M) 6= λ(M ′) for any two different reachableM, M ′).

STGs naturally inherit many notions from their underlying (Petri) nets. We already used this when

speaking about ‘enabling a label’, e.g.M
a+

−−→ (meaning thatM enables a transition with labela+).
Thus we will freely speak aboutn-bounded, live, marked graph, or free-choice STGs, etc. We can also
use notions likea is dead atM (meaning that each transition with labela+ or a− is dead atM ).

We also freely use notation likeM
u
−→M ′ for sequences of labels (meaning that there is a transition

sequenceσ = t1t2 · · · tm such thatM
σ
−→M ′ andu = ℓ(t1)ℓ(t2) · · · ℓ(tm)). We can occasionally even

mix, and consideru as a sequence of transitions and labels, when this should not cause confusion. We
also use expressions likeu isa-free, meaning that there is noa+ nora− in u; and ifu contains transitions,
we mean that those transitions do not have labelsa+, a−. Recall thatP (u) denotes the Parikh vector of
u; We denote byP (u)(a+) the number of transitions with labela+ in u.

Finally we note that since the circuit implementation of an STG can be seen as a finite object with at
most2n states, wheren is the number of signals, STGs used in practice are bounded, most of them are
even 1-bounded; but in principle unbounded STGs can make sense.

We finish the section by a characterization of consistency, i.e., we look in moredetail on when an
STG is inconsistent.

Proposition 2.1. An STGS = (N, M0, ℓ) is inconsistent (i.e., it admits no consistent binary encoding)
iff there is

a pair(M, a) whereM0 −→
∗ M anda is a signal

such that one of the following conditions holds:

(1) M enablesua+ andva−

for somea-free sequencesu, v,

(2) M enablesa+ua+ or a−ua−

for somea-free sequenceu,

(3) M is reachable byw1a
+u and byw2a

−v

for somea-free sequencesu, v (and somew1, w2).
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Proof:
If there is a pair(M, a) such that one of the conditions holds thenS is obviously inconsistent.

If there is no such pair then we can (soundly) define the following (partial)encodingλ:
For each reachableM and signala we put

• λ(M)(a) = 0 if M enablesua+ for ana-free sequenceu,

• λ(M)(a) = 1 if M enablesua− for ana-free sequenceu.

We note that ifλ(M)(a) is (so far) undefined thenM is a-dead; we then put

• λ(M)(a) = 1 whenM can be reached bywa+u for somea-free sequenceu,

• λ(M)(a) = 0 whenM can be reached bywa−u for somea-free sequenceu,

• λ(M)(a) = λ(M0)(a) otherwise (i.e., whenM is reachable only bya-free sequences); ifM =
M0 we defineλ(M0)(a) = 0 (we could useλ(M0)(a) = 1 as well here).

One can easily check thatλ is a consistent binary encoding. ⊓⊔

3. Marked graphs

In this section we show that consistency can be decided in polynomial time for all marked graph STGs
and that both the CSC problem and the USC problem are co-NP-complete forthem, even in the case of
1-bounded acyclic marked graphs and in the case of live 1-bounded marked graphs.

3.1. Consistency

In [7] it is shown that consistency of live, bounded, and cyclic free-choice STGs can be decided in
polynomial time. (A Petri net iscyclic if the initial marking is reachable from every reachable marking,
i.e., if it is always possible to return to the initial marking). Since live and bounded marked graphs are
always cyclic (see for instance [4]), and marked graphs are a special case of free-choice nets, [7] provides
a polynomial algorithm deciding consistency of live and bounded marked graph STGs. We now show a
polynomial algorithm for all marked graph STGs.

We start by recalling some simple properties of marked graphs and derive asimpler variant of Propo-
sition 2.1, valid for marked graphs. One such property is that ifM enables a sequence withn occurrences

of t andM
t′
−→M ′ for t′ 6= t thenM ′ enables a sequence withn occurrences oft as well; if t′ = t then

M ′ enables a sequence withn−1 occurrences oft.
By P (u)(t) we denote the number of occurrences oft in a transition sequenceu (P stands for the

Parikh vector).

Claim 3.1. Let M be a marking of a marked graph. IfM
u
−→M1 andM

v
−→M2 thenM

w
−−→M ′ for

somew andM ′ such that
∀t : P (w)(t) = max{P (u)(t), P (v)(t)}.

Moreover, ifM1
t
−→ andP (v)(t) ≤ P (u)(t) thenM ′ t

−→.
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Proof:
We can performu and then a sequence consisting ofP (v)(t)−P (u)(t) occurrences of eacht for which
P (u)(t) < P (v)(t). ⊓⊔

Slightly abusing notation, bymax(u, v) we will denote thew guaranteed by the claim.

Proposition 3.1. A marked graph STGS = (N, M0, ℓ) is inconsistent iff one of the following condi-
tions holds:

(1’) there is a reachableM (M0 −→
∗ M ) such that

M
a+

−−→ andM
a−

−−→ for some signala,

(2’) there is a reachableM such that

M
a+ua+

−−−−−→ or M
a−ua−

−−−−−→
for some signala and somea-free sequenceu.

Proof:
If (1’) or (2’) holds thenS is obviously inconsistent.

Now assume thatS is inconsistent. Then we know that there is a reachableM and a signala such
that one of the conditions (1), (2), (3) of Proposition 2.1 holds. It is sufficient to show that this implies
(1’) or (2’).

If (M, a) satisfies (2) then (2’) holds. If(M, a) satisfies (1), i.e.M
ua+

−−−→ andM
va−

−−−→ for a-free

sequencesu, v, thenM
max(u,v)
−−−−−−→M ′ andM ′ a+

−−→, M ′ a−

−−→ (recall Claim 3.1); thus (1’) holds.
We finish by deriving a contradiction from the assumption that the inconsistency of S can not be

shown by using (1) nor (2) while we have(M, a) satisfying (3). Hence

M0
w1t1u
−−−−→M and M0

w2t2v
−−−−→M ,

whereℓ(t1) = a+, ℓ(t2) = a−, andu, v area-free.
Necessarily, all transitions labelled bya+ or a− are dead inM—otherwise there would exist(M ′, a)

satisfying (2). Thus botht1, t2 are dead inM , which means thatw1 contains the maximal possible
number of occurrences oft2, while w2 contains the maximal possible number of occurrences oft1.

Let w1 = u1t2v1 wherev1 is t2-free. Similarlyw2 = u2t1v2 wherev2 is t1-free. We note that
P (u2)(t2) ≤ P (u1)(t2), andP (u1)(t1) ≤ P (u2)(t1).

HenceM0
max(u1,u2)
−−−−−−−−→M ′ whereM ′ enables botht1 andt2, so we have bothM ′ a+

−−→ andM ′ a−

−−→.
Thus(M ′, a) satisfies (1)—a contradiction. ⊓⊔

It is now sufficient to show that conditions (1’), (2’) of Proposition 3.1 can be checked in polynomial
time.

To this aim, we recall further useful observations about marked graphs. We note that, given a marked
graph STGS = (N, M0, ℓ), we can check in polynomial time if there is a cycle inN which is not marked
atM0 (i.e., its places have no tokens inM0). The places of such a cycle can be safely removed, since no
transition in the cycle can ever occur.

We call a marked graph(N, M0) normalizedif every cycle inN is marked atM0.
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Claim 3.2. Let (N, M0) be a normalized marked graph, and consider the inequationM0 + CN ·X ≥ 0,
whereCN is the incidence matrix ofN . An integer vectorX0 ≥ 0 is a solution of this inequation if and
only if M0

σ
−→ for a transition sequenceσ whose Parikh vector isX0.

Moreover, ifM0
σ
−→M thenM0 + CN · X0 = M .

Proof:
The only nonobvious claim is that a solutionX0 implies the existence of an appropriateσ. But this can
be done easily by induction on|X0|: among the transitionst with X0(t) ≥ 1, some must be enabled
at M0—otherwise we would find a cycle unmarked inM0; we can fire such a transition and use the
induction hypothesis. ⊓⊔

Now we come to the polynomiality claims, which can be quickly established by using linear pro-
gramming (which is a well-known polynomial problem).

Proposition 3.2. For normalized marked graph STGs, checking (1’) of Proposition 3.1 canbe done in
polynomial time.

Proof:
Let S = (N, M0, ℓ) be a normalized marked graph STG. IfS satisfies (1’) thenN contains transitions
t1, t2 with ℓ(t1) = a+ andℓ(t2) = a− such that there isσ for which

M0
σ
−→M, M

t1−−→, M
t2−−→ .

We note thatM ≥ Mt1 + Mt2 whereMt denotes the marking that puts one token in each input place of
t and no tokens elsewhere. The Parikh vector ofσ is thus a solution of the linear inequation

M0 + CN · X ≥ Mt1 + Mt2 .

On the other hand, if the inequation has a nonnegative, rational solutionX0 then the integer vector⌊X0⌋
is also a solution, as one can easily check. Claim 3.2 then guarantees the existence of an appropriateσ,
meaning thatS satisfies (1’).

Thus checking (1’) can be done by solving the inequations for all appropriate pairst1, t2. ⊓⊔

Proposition 3.3. For normalized marked graph STGs not satisfying (1’), checking (2’) can be done in
polynomial time.

Proof:
Let S = (N, M0, ℓ) be a normalized marked graph STG which does not satisfy (1’); i.e., no reachableM
can enable botha+ anda−. From this we can derive that(M0, a) does not satisfy (1) of Proposition 2.1.
Therefore, in every occurrence sequence containing occurrences of the signala, the first occurrence ofa
always has the same sign. Which sign this is,+ or −, can be determined very efficiently, e.g. by firing
any maximal transition sequence in which each transition ofS occurs at most once (such a sequence
contains all transitions that can ever be enabled).

Consider signala, and assume we have found thata+ is fireable as the first ofa+, a−. (The case
with a− being the first is similar.)

Let us now solve the linear programming problems
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maximize f(X)

subject to X ≥ 0, M0 + CN · X ≥ 0,

minimize f(Y )

subject to Y ≥ 0, M0 + CN · Y ≥ 0,

where
f(X) =

∑

t∈ℓ−1(a+)

X(t) −
∑

t∈ℓ−1(a−)

X(t).

If we find that it is NOT the case that both problems have optimal solutionsXop, Yop with f(Xop) = 1
andf(Yop) = 0 then we claim ‘(2’) holds’.

To check (2’), we run the above procedure for each signala separately, and claim that (2’) holds
when one signal gives rise to this claim, otherwise we claim that (2’) does not hold. The overall time of
this algorithm is surely polynomial; it remains to show its correctness.

Let us again consider signala wherea+ is fireable as the first (ofa+, a−). It is obvious that condition
(2’) holds for signala iff there is a transition sequenceσ, with Parikh vectorX, such thatM0

σ
−→ and

f(X) ≥ 2 (there are twoa+’s without anya− in-between) orf(X) ≤ −1 (two a−’s without anya+

in-between).
So if (2’) holds for signala then the procedure fora surely gives rise to the claim ‘(2’) holds’.
If (2’) does not hold fora then we havef(X) ∈ {0, 1} for eachintegeradmissible solutionX (due

to Claim 3.2). We want to show that the procedure fora finds some optimal solutionsXop, Yop with
f(Xop) = 1 andf(Yop) = 0 (and thus does not give rise to the claim ‘(2’) holds’).

To see this, we recall that all solutions ofX ≥ 0, M0 + CN · X ≥ 0 constitute a polyhedron.
The optimal solutionsXop, Yop exist if and only iff(X) is bounded from above and from below on the
polyhedron, and then such solutions can be found in the extremal points. The fact thatf(X) ∈ {0, 1}
for all integerX easily implies thatf(X) is bounded for all (admissible)X; thus the optimal solutions
exist.

We now note that every row ofCN contains at most one+1 and at most one−1, which means
that matrixCN is (totally) unimodular. Hence the extremal points of the polyhedron are integervectors
(cf. e.g. [13]). Thus the procedure fora indeed finds some optimal solutionsXop, Yop with f(Xop) = 1
andf(Yop) = 0. ⊓⊔

Theorem 3.1. Consistency of marked graph STGs can be decided in polynomial time.

Proof:
The polynomial algorithm first normalizes the STG and then uses the algorithms guaranteed by Proposi-
tions 3.2 and 3.3 to check if one of the conditions (1’), (2’) of Proposition 3.1 holds. ⊓⊔

3.2. Complete state coding

In this subsection we show the announced co-NP-completeness results for the CSC problem and the USC
problem on (consistent) marked graph STGs.

The next lemma is the main technical result of the paper. We say that an occurrence sequence is
balancedif for every signala the sequence contains the same number of occurrences of transitions
labelled bya+ and of transitions labelled bya−.
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Lemma 3.1. The following problem is NP-complete:
Instance:a (consistent) STGS = (N, M0, ℓ) such that(N, M0) is a 1-bounded, acyclic marked graph.
Question: is there an occurrence sequenceM0

σ
−→M1

τ
−→M2 of S such thatτ is nonempty and bal-

anced?

Proof:
Membership in NP is clear: In any net(N, M0) which is 1-bounded and acyclic, each transition can
appear at most once in any occurrence sequence. So a nondeterministicalgorithm can just guess a
sequenceστ of pairwise distinct transitions and verify that it is performable fromM0 and thatτ is
nonempty and balanced.

The main point is NP-hardness, which we show by a reduction from CNF-SAT. Let ϕ be a boolean
formula in conjunctive normal form

• with m clausesc1, . . . , cm,

• andn variablesx1, . . . , xn.

(E.g., formula(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) has 2 clauses and 4 variables.)
Our aim is to show a polynomial construction of a certain STGSϕ = (N, M0, ℓ), with (N, M0)

being a 1-bounded acyclic marked graph, so thatϕ is satisfiable iffSϕ admitsM0
σ
−→M1

τ
−→M2 for

some sequenceσ and some nonempty balanced sequenceτ .
The construction is based on the fact that there is a truth assignment

A : {x1, x2, . . . , xn} → {0, 1}

satisfyingϕ if and only if there is aconsistent choice of literals, by which we mean a mapping

l : {c1, c2, . . . , cm} → {x1, x1, x2, x2, . . . , xn, xn}

attaching to each clauseci one of its literals, denotedl(ci), in such a way thatl(ci) 6= l(cj) for all i, j

(i.e., it is forbidden that one clause ‘chooses’x while another clause ‘chooses’x).
We can easily observe that any consistent choice of literalsl naturally provides a satisfying truth

assignmentA (which can be specified arbitrarily for variables not appearing in the range of l); and any
satisfying truth assignment enables to define (maybe several) consistent choices of literals.

We now describe the STGSϕ, providing also informal comments which will ease the later correctness
proof. Figure 1 shows the overall structure ofSϕ.

We need a few remarks about the notation. We constructSϕ = (N, M0, ℓ) whereN is an acyclic
marked graph. All the minimal elements with respect to the flow relation will be places, and precisely
these places will be initially marked (i.e., each will carry one token). We say that there isan arc from
transitiont1 to transitiont2 when there is an (intermediate) placep (initially unmarked) and arcst1 → p,
p → t2. (This is, in fact, a usual convention which we also use for drawing marked graphs.)

Each symbol of Figure 1 (i.e., eachV 1
T , . . . , CP

m) stands for an acyclic marked graph. The arrow
V 1

T → N$ has the following meaning:V 1
T has a transitiont which is the unique maximal element inV 1

T

(w.r.t. the order induced by the flow relation),N$ has a transitionu which is the unique minimal element
in N$, and the (overall) netN contains an arc leading fromt to u (with an intermediate place—using our
convention). The meaning of the other arrows in the structure is analogous.

It will be clear (after we finish the construction) that any complete behaviour of Sϕ can be divided
into three phases:
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V 1
T

...
V n

T

V 1
F

...
V n

F

N$

CN
1

...
CN

m

CP
1

...
CP

m

Figure 1. The overall structure ofSϕ

I. first, all transitions inV 1
T , . . . , V n

T , CN
1 , . . . , CN

m occur,

II. then all transitions ofN$ follow,

III. and finally all transitions inV 1
F , . . . , V n

F , CP
1 , . . . , CP

m occur.

The complete behaviours ofSϕ differ only in the order in which transitions occur in the phases I and III.
We proceed to describe the marked graphs corresponding toN$, V

1
T , . . . , V n

T , CN
1 , . . . , CN

m . Since we
need to use both sub- and superscripts, we change the notation and write+a and−a instead ofa+ and
a−. The netN$, enabled after the whole phase I is finished, has one single (complete) behaviour, shown
in Figure 2.

+$ −x1 −x2 · · · −xn −c1 −c2 · · · −cm −$

Figure 2. (Linear) behaviour ofN$

This means that the signal set ofSϕ contains (among others):

• a signalci for every clause (1 ≤ i ≤ m);

• a signalxj for every variable (1 ≤ j ≤ n);

• a (special) signal$.

Signal$ will not appear anywhere else but inN$. It will be the case that any nonempty balanced sequence
must include all transitions ofN$, and so such a sequence will necessarily contain the whole phase II.

For the rest of the proof letbal denote any non-empty and balanced sequence such thatM0
σ
−→

M1
bal
−−→M2. In bal , each falling−xj (1 ≤ j ≤ n) must be compensated by a raising+xj ; the label

+xj will appear just on the maximal (i.e., the last) transition ofV
j
T (cf. Figure 3) and on the minimal

(i.e., the first) transition ofV j
F (cf. Figure 4). So precisely one of the subnetsV

j
T , V

j
F will contribute to

bal . We interpret this as ‘choosing’ a truth assignmentA.
Similarly, each falling−ci (1 ≤ i ≤ m) must be compensated by a raising+ci; the label+ci will

appear just once inCN
i and once inCP

i , now ‘almost’ as the last transition and ‘almost’ as the first
transition, respectively. Again, exactly one of the subnetsCN

i , CP
i will contribute tobal .
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Now we continue with the details of our construction. We extend the signal setused so far by

• a signalpj
i for each pairi, j (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that clauseci contains literalxj (p

stands for ‘positive’);

• a signalnj
i for each pairi, j (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that clauseci contains literalxj (n

stands for ‘negative’).

(As usual, we can assume that no clauseci of formulaϕ contains a complementary pair of literals.)
Given j (1 ≤ j ≤ n), let {ci1 , ci2 , . . . , cia} be the set of clauses containing (the positive) literal

xj . The (sub)netV j
T (representing settingxj to ‘true’) is depicted in Figure 3. ThusV j

T ‘emits’ labels

• +p
j
i1

...
...

• +p
j
ia

+xj

Figure 3. The netV j
T

+p
j
i1

, +p
j
i2

, . . . ,+p
j
ia

in any order, and then finishes by+xj .

Now let{ck1
, ck2

, . . . , ckb
} be the set of clauses containing (the negative) literalxj . The (sub)netV j

F

(representing settingxj to ‘false’) is depicted in Figure 4. Thus, after the label−$ of N$ occurs,V j
F

+xj

−n
j
k1

...
...

−n
j
kb

Figure 4. The netV j
F

‘emits’ label+xj and then labels−n
j
k1

,−n
j
k2

, . . . ,−n
j
kb

in any order.

We now define the subnetsCN
i , CP

i . Recall that the sequencebal will contain either transitions of
CN

i or CP
i , but not of both. This corresponds to ‘choosing’ either a positive or anegative literall(ci)

from ci. Which literal is chosen will depend on which transitions of the corresponding net occur inbal ,
and is explained later.

The netsCN
i andCP

i have no concurrency. They use additional ‘parenthetical’ signals. More pre-
cisely, we enhance the signal set by

• a signal¤j
i for each pairi, j, 1 ≤ i ≤ m and1 ≤ j ≤ ni, whereni is the number of negative

literals inci;
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• a signal△j
i for each pairi, j, 1 ≤ i ≤ m and1 ≤ j ≤ pi, wherepi is the number of positive

literals inci.

Giveni (1 ≤ i ≤ m), let {xj1 , xj2 , . . . , xja
} be the set of negative literals of the clauseci.

The (sub)netCN
i has a (marked) place as the least element (w.r.t. the flow relation). And the only

(complete) behaviour ofCN
i is the sequence of labels shown in Figure 5. The key observation is that if

+¤
1
i +n

j1
i −n

j2
i −¤

1
i +¤

2
i +n

j2
i −n

j3
i −¤

2
i · · ·

· · ·+¤
a−1
i +n

ja−1

i −n
ja

i −¤
a−1
i +¤

a
i +n

ja

i +ci −¤
a
i

Figure 5. (Linear) behaviour ofCN
i

the label+ci of CN
i belongs to the balanced sequencebal , thenbal must also contain−¤

a
i , and thus,

by balancedness, also+¤
a
i . But thenbal also contains+n

ja

i , and so it must also contain−n
ja

i . If we
add the label−n

ja

i of CN
i to bal , then we are forced to add−¤

a−1
i as well, and thus also+¤

a−1
i and

+n
ja−1

i ; etc. So if labels ofCN
i occur inbal , thenbal contains an occurrence of some+n

j
i , wherexj is

a literal ofci, such that the ‘balancing’ occurrence of−n
j
i does not come fromCN

i , and so it must come
from V

j
F . We interpret this as ‘choosing’ the literalxj of ci, i.e., as settingl(ci) = xj .

The (sub)netCP
i is similar. We let{xk1

, xk2
, . . . , xkb

} be the set of positive literals of the clause
ci. The least element ofCP

i (w.r.t. the flow relation) is a transition labelled by△1
i ; it follows from the

overall structure that this transition is enabled after−$ occurs. The only (complete) behaviour ofCP
i

(after being enabled) is the sequence of labels shown in Figure 6. And wereason similarly as above. If

+△1
i +ci −pk1

i −△1
i +△2

i +pk1

i −pk2

i −△2
i +△b

i +p
kb−1

i −p
kb

i −△b
i

Figure 6. (Linear) behaviour ofCP
i

the label+ci from CP
i belongs tobal , thenbal must also contain+△1

i , and thus also−△1
i etc. So if

labels ofCP
i occur inbal , thenbal contains an occurrence of some−p

j
i , wherexj is a literal ofci, such

that the ‘balancing’ occurrence+p
j
i does not come fromCN

i , and so it must come fromV j
T . We interpret

this as ‘choosing’ the literalxj of ci, i.e., as settingl(ci) = xj .
For illustration, Figure 7 shows the STGSϕ for a simple formulaϕ. In fact, it is a slightly different

variant ofSϕ, using more concurrency and additional signalsT j , F j which stress the correspondence
with setting variablexj to true or false. (The shaded region shows a balanced sequence, which will be
also discussed later.)

We have thus completed the (obviously polynomial) construction ofSϕ, and we can easily check
thatSϕ is a consistent 1-bounded acyclic marked graph. We have also providedsome intuition why the
reduction works, i.e., why

ϕ is satisfiable⇐⇒ Sϕ admitsM0
σ
−→M1

τ
−→M2 for some nonempty balancedτ .
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••••••

+p1
1+p1

2

+T 1

+x1

−T 1

+p2
2

+T 2

+x2

−T 2

+p3
1

+T 3

+x3

−T 3

+¤
1
1

+n2
1+c1

−¤
1
1

+¤
1
2

+n3
2+c2

−¤
1
2

+$

−x1−x2−x3−c1−c2

−$

+F 1

+x1

−F 1

+F 2

+x2

−F 2

−n2
1

+F 3

+x3

−F 3

−n3
2

+△1
1

+c1−p1
1

−△1
1

+△2
1

+p1
1−p3

1

−△2
1

+△1
2

+c2−p1
2

−△1
2

+△2
2

+p1
2−p2

2

−△2
2

Figure 7. STGSϕ for ϕ ≡ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
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Now we summarize the correctness arguments, first informally and then in moredetail.
If ϕ is satisfiable, then we ‘choose’ a satisfying truth assignmentA and for each clauseci we ‘choose’

a literal li such thatA makesli true, where ‘choose’ has the meaning described above. This leads
to a balanced sequencebal . On the other hand, if a balanced sequencebal can be found, then the
corresponding ‘choice’ of literals must be consistent (and soϕ is satisfiable): if bothxj andxj are
‘chosen’, then both+n

j
i and−p

j
k appear inbal , and bothV j

T anV
j
F must contribute tobal , which, as we

have seen, is not possible. A more detailed formulation of these arguments follows.

(“=⇒”) Suppose thatϕ is satisfiable; we shall show that there is an occurrence sequenceM0
σ
−→

M1
τ
−→M2 in Sϕ such thatτ is nonempty and balanced. Let

l : {c1, c2, . . . , cm} → {x1, x1, x2, x2, . . . , xn, xn}

be a consistent choice of literals (which must exist sinceϕ is satisfiable).
We now define certain sequencesσ(X), τ(X) for the appropriate subnetsX. The required sequence

σ will then be defined as
σ = σ(V 1

T ) · · ·σ(V n
T )σ(CN

1 ) · · ·σ(CN
n ),

andτ will be defined asτ = τ1 τ2 τ3, where

τ1 = τ(V 1
T ) · · · τ(V n

T ) τ(CN
1 ) · · · τ(CN

n ),

τ2 = τ(N$),

τ3 = τ(V 1
F ) · · · τ(V n

F ) τ(CP
1 ) · · · τ(CP

n ).

As expected, we define
τ(N$) = +$ −x1 · · · −xn −c1 · · · −cm −$.

For eachj, 1 ≤ j ≤ n, we proceed as follows. Ifxj is in the range ofl (xj was chosen by at least one
clause), we defineτ(V j

T ) to be a sequence finishing by+xj and otherwise consisting of precisely those
+p

j
i for which xj = l(ci); σ(V j

T ) contains all others+p
j
i appearing inV j

T . And we defineτ(V j
F ) as the

empty sequence.
If xj is in the range ofl, we defineσ(V j

T ) to be a sequence containing all transitions (i.e., labels)
of V

j
T , and we defineτ(V j

T ) as empty. But nowτ(V j
F ) is nonempty; it starts with+xj and otherwise

contains precisely those−n
j
i for whichxj = l(ci).

The above definition is sound since bothxj , xj can not belong to the range ofl (l is consistent). If
none ofxj , xj belongs to the range ofl, we can defineσ(V j

T ) as a sequence consisting of all+p
j
i in V

j
T ,

and we putτ(V j
T ) = +xj andτ(V j

F ) empty.
Now for eachi, 1 ≤ j ≤ m, we proceed as follows. Ifl(ci) = xj (thusτ(V j

T ) is nonempty), we
defineτ(CP

i ) as the sequence
+△1

i +ci · · · −p
kd

i −△d
i ,

wherekd = j (recall Figure 6); thus+ci and−p
j
i is left to be compensated inτ(CP

i ). And we define
σ(CN

i ) as the whole behaviour ofCN
i , andτ(CN

i ) as empty.
If l(ci) = xj (thusτ(V j

F ) is nonempty), we define

σ(CN
i ) = +¤

1
i +n

j1
i · · · −n

jd

i −¤
d−1
i

τ(CN
i ) = +¤

d
i +n

jd

i · · ·+ci −¤
a
i ,
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wherejd = j (recall Figure 5); thus+ci and+n
j
i is left to be compensated inτ(CP

i ). And we define
τ(CP

i ) as empty.
It is now straightforward to check that the defined sequenceστ can really occur fromM0, and that

τ is nonempty and balanced. (For eachj, 1 ≤ i ≤ m, eitherτ(V j
T ) or τ(V j

F ) is nonempty; thus the
occurrence−xj of τ(N$) is compensated. For eachi, 1 ≤ i ≤ m, eitherτ(CN

i ) or τ(CP
i ) is nonempty.

Suppose that it isτ(CN
i ), the other case being similar. Thenτ(CN

i ) is balanced except of the two
‘superfluous’ occurrences:+ci and+n

j
i , wherel(ci) = xj . But +ci is compensated by−ci of τ(N$),

and+n
j
i is compensated by−n

j
i of τ(V j

F ).)
Remark.The formulaϕ of Figure 7 is satisfiable. The shaded region corresponds to the balanced

sequence for the choicel(c1) = x2, l(c2) = x1 (and settingx3 to true).

(“⇐=”) We now assume that there is an occurrence sequenceM0
σ
−→M1

τ
−→M2 in Sϕ such thatτ is

nonempty and balanced; we shall show thatϕ is satisfiable. We can easily check thatτ must contain at
least one transition ofN$; but this obviously implies thatτ contains all transitions ofN$.

Henceτ can be written
τ = τ ′

1 τ ′

2 τ ′

3,

where
τ ′

2 = τ(N$) = +$ −x1 · · · −xn −c1 · · · −cm −$.

For eachj, 1 ≤ j ≤ n, the occurrence−xj in τ ′

2 must be compensated by+xj in eitherτ ′

1 or τ ′

3; so
precisely one of the netsV j

T andV
j
F contributes toτ . This naturally corresponds to a truth assignmentA.

For eachi, 1 ≤ j ≤ m, the occurrence−ci in τ ′

2 must be compensated by+ci in eitherτ ′

1 or τ ′

3. It is
thus clear that precisely one of the netsCN

i andCP
i contributes toτ ; in this contribution, precisely one

+n
j
i or −p

j
i , respectively, is left to be compensated. This naturally defines a choice of literals l; we will

show that this choicel is consistent.
The only possibility how such a ‘superfluous’+n

j
i (l(ci) = xj) is compensated inτ is by −n

j
i in

V
j
F , which means that+xj of V

j
F appears inτ (i.e.,A(xj) = 0). If it is −p

j
i which is to be compensated

(l(ci) = xj), τ must contain+p
j
i of V

j
T , which means that+xj of V

j
T appears inτ (i.e.,A(xj) = 1).

This implies that the above mentioned choice of literalsl is indeed consistent, which means thatϕ is
satisfiable. ⊓⊔

The previous lemma is now used to derive the desired co-NP-hardness results.

Proposition 3.4. Both the CSC problem and the USC problem are co-NP-hard for (consistent) STGs
whose underlying nets are 1-bounded acyclic marked graphs.

Proof:
We use the STGSϕ constructed in the proof of Lemma 3.1, recalling that it is a consistent 1-bounded
acyclic marked graph; let us denote its (unique) consistent binary encoding by b.

Assume now thatSϕ does not have the USC property. This means that there are occurrencesequences

M0
σ1−−→M1, M0

σ2−−→M2,

such that

• M1 6= M2 (i.e.,σ1 andσ2 do not contain the same transitions),
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• b(M1) = b(M2).

We explore the following cases C1), C2), C3), covering all possibilities.

C1) One ofσ1, σ2 contains+$ but not−$ (turns out impossible):

In this case, bothσ1, σ2 must contain+$ and not−$ (sinceb(M1) = b(M2)). (I.e., bothM1,
M2 are in the ‘middle segment’.) But this is impossible, since we obviously cannot have both
M1 6= M2 andb(M1) = b(M2).

C2) Bothσ1, σ2 do not contain+$ or both contain−$ (turns out impossible):

Either bothM1, M2 are in the ‘left segment’ or both are in the ‘right segment’. Let us assume the
subcase where bothσ1, σ2 do not contain+$ (i.e., both are in the ‘left segment’). We observe that
σ1 andσ2 must contain the same transitions ofV

j
T , for eachj (sinceb(M1) = b(M2)).

So there must be a transition ofCN
i (for somei), which is, say, inσ2 but not inσ1; i.e.,σ2 contains

a longer prefix of the behaviour ofCN
i (cf. Figure 5) thanσ1. But then the difference between the

two prefixes must obviously be balanced, which can be easily checked to be impossible.

The subcase where bothσ1, σ2 contain−$ can similarly be shown as impossible.

C3) One ofσ1, σ2 does not contain+$, and the other contains−$:

We can assume thatσ1 does not contain+$ andσ2 contains−$. (I.e.,M1 is in the ‘left segment’,
M2 is in the ‘right segment’.) This implies that there is (a nonempty)τ such thatM0

σ1−−→M1
τ
−→

M2; necessarily,τ is balanced. And from the proof of Lemma 3.1 we know that this is possible if
and only ifϕ is satisfiable.

Thus cases C1), C2) turn out to be impossible, and C3) is possible if and only if there is a (nonempty)τ
such thatM0 −→

∗ M1
τ
−→M2; necessarily,τ is balanced. Moreover, suchM1, M2 (with b(M1) = b(M2))

enable different sets of signals, so the CSC property is violated—when viewing all signals as output
signals. Therefore we can apply Lemma 3.1 to finish the proof. ⊓⊔

Proposition 3.5. Both the CSC problem and the USC problem are co-NP-hard for live 1-bounded marked
graph STGs.

Proof:
Consider the USC problem. We reuse the Petri netSϕ from the proof of Lemma 3.1. We note that the
behaviour obtained by firing all transitions ofSϕ is not balanced; i.e.,b(M0) andb(Mf ), whereb is the
consistent boolean encoding andMf is the final marking, differ on some signals.

Remark.For concreteness, these unbalanced signals arexj , ci, n
jd

i (for d = 2, 3, . . . , a),
andp

kd

i (for d = 1, 2, . . . , b−1).

We define a new STGS′

ϕ by adding a ‘final segment’ toSϕ: we add a fresh signalf and construct a
‘linear’ netNf with the behaviour

+f ℓ1 ℓ2 · · · ℓk −f,
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whereℓi are the labels compensating the unbalance ofSϕ; they include−xj , −ci, +n
j2
i , etc.; we note

that each nonempty sequence of transitions ofNf is unbalanced. The netNf will be prompted inS′

ϕ

after all transitions ofSϕ occur; the final transition ofNf will then restore the initial markingM0.
HenceS′

ϕ is an STG whose underlying net is a live and 1-bounded marked graph. It is easy to see
that any sequence containing precisely one occurrence of each transition of S′

ϕ is balanced. Letb′ be the
unique consistent boolean encoding ofS′

ϕ.
We show thatSϕ has the USC property iffS′

ϕ has the USC property, which proves the second part of
the proposition.

It is trivial that if Sϕ does not have the USC property, thenS′

ϕ does not have it either. For the other
direction, assume thatS′

ϕ does not have the USC property. Then there is awitness of the USC-violation,
i.e., two occurrence sequences

M0
σ1−−→M1, M0

σ2−−→M2

as in the proof of Proposition 3.4.
Let us assume that the witness isminimal in the sense that neitherσ1 nor σ2 can be shortened. We

prove that this minimal witness also corresponds to a USC-violation in the Petri net Sϕ. It suffices to
show that neitherσ1 norσ2 contains a transition labelled by the signalf .

Assume that one ofσ1 andσ2, sayσ2, contains an occurrence of the signalf . Sinceb′(M1) =
b′(M2), we can easily check that the assumptionb′(M2)(f) = 1 would forceM1 = M2, a contradiction.
Sob′(M2)(f) = 0, which means that the last occurrence off in σ2 is−f . But thenσ2 can be (rearranged
and) written asσ2 = σ′

2σ whereσ contains precisely one occurrence of each transition ofS′

ϕ. This

impliesM0
σ′
2−−→M2, which contradicts our minimality assumption.

Consider now the CSC property. Assume that all signals are output signals. We show thatSϕ has the
CSC property iffS′

ϕ has the CSC property. As in the USC case, it is trivial that ifSϕ does not have the
CSC property, thenS′

ϕ does not have it either. For the other direction, assumeSϕ has the CSC property.
We have shown in Lemma 3.1 that in this caseSϕ has the USC property as well. So, by the first part of
this proof concerning the USC property,S′

ϕ has the USC property. Since USC implies CSC,S′

ϕ has the
CSC property, and we are done. ⊓⊔

We now show the upper bound, a lemma which was already (implicitly) proved in [1].

Lemma 3.2. Both the CSC problem and the USC problem are in co-NP for (bounded or unbounded)
marked graph STGs.

Proof:
Let S = (N, M0, ℓ) be a normalized and consistent marked graph STG. (We recall that consistency ofS
can be checked in polynomial time.) It is sufficient to deal with the CSC problem;the claim for the USC
problem will follow easily.

We observe thatS does not have the CSC property if and only if there are sequencesu1, u2 such that

• M0
u1−−→M1, M0

u2−−→M2,

• M1 6= M2,

• for each signala:

P (u1)(a
+) − P (u1)(a

−) = P (u2)(a
+) − P (u2)(a

−),
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• M1, M2 enable different output signals.

To check that there is such a ‘CSC-violation’, a nondeterministic (polynomial)algorithm guesses a place
p such thatM1(p) 6= M2(p), and guesses further whetherM1(p) > M2(p) or M2(p) > M1(p) holds.
The algorithm proceeds to guess an output signala, and which ofM1, M2 enablesa. Assume w.l.o.g.
the guess is thatM1 enablesa andM2 does not. The algorithm guesses which places ofM1 carry at least
one token (including all the input places of some transition labelled bya) and which places ofM2 carry
no token (including at least one input place of each transition labelled bya). The algorithm translates
all these guesses into a system of linear inequalities, guesses an integer solution of polynomial size, and
checks in polynomial time that it is indeed a solution. (Variables for transition sequences are replaced by
variables for their Parikh vectors, and Claim 3.2 is used.) ⊓⊔

Putting together Propositions 3.4 and 3.5 and Lemma 3.2 we obtain:

Theorem 3.2. The CSC problem and the USC problem are co-NP-complete for marked graph STGs, and
stay co-NP-hard for live and 1-bounded marked graph STGs as well as for 1-bounded acyclic marked
graph STGs.

Remark.Notice that in the marked graphs produced by the reduction from the proofof Lemma 3.1
there are different transitions carrying the same label. The case with injective labelling (each transition
has its unique label) might well admit a polynomial algorithm but we leave this problem open here.

4. Live and bounded free-choice nets

As already mentioned, [7] shows that consistency can be decided in polynomial time for live and bounded
free-choice STGs that are moreover cyclic, meaning that the initial marking isreachable from every
reachable marking. It is not known whether the polynomiality result still holds ifthe cyclicity condition
is removed, and we leave this problem open.

We now show co-NP-completeness of the CSC problem and of the USC problem for live and bounded
free-choice STGs. Since live and bounded marked graphs are cyclic,Theorem 3.2 gives co-NP-hardness
even forcyclic live and bounded free-choice STGs. So we just need to show that the complementary
problem is in NP. We proceed similarly as in the marked graph case, first recalling a known result analo-
gous to Claim 3.2; for this we use the following notation:

For a netN = (P, T, F ) andX : T → IN, we denote byNX = (PX , TX , FX) the subnet ofN
defined as follows:TX is the set of transitions ofT for which X(t) ≥ 1, PX = •TX ∪ T •

X , andFX is
the projection ofF on (PX × TX) ∪ (TX × PX). We also recall thatQ ⊆ P is atrap in N = (P, T, F )
if Q• ⊆ •Q. (If a trap is marked, i.e., has at least one token, it cannot be unmarked). Here we consider
only nonempty trapsQ 6= ∅.

Lemma 4.1. ([15])
Let (N, M0) be a live and bounded free-choice Petri net, and letCN be its incidence matrix. An integer
vectorX0 ≥ 0 is the Parikh vector of a transition sequence enabled atM0 if and only if

1. M0 + CN · X0 ≥ 0, and

2. M = M0 + CN · X0 marks all traps ofNX0
.
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Theorem 4.1. The CSC problem and the USC problem are co-NP-complete for live and bounded free-
choice STGs.

Proof:
As mentioned above, co-NP-hardness follows from Theorem 3.2 (evenwhen the Petri nets are also
cyclic).

A nondeterministic polynomial algorithm for showing that a given (consistent)live and bounded
free-choice STG does not have the CSC property (or the USC property) can be constructed as in the
proof of Lemma 3.2, using Lemma 4.1 instead of Claim 3.2.

A little difficulty is the fact that a (nonnegative integer) solution ofM0 +CN ·X ≥ 0 may not be the
Parikh vector of an occurrence sequence. The algorithm handles this problem by guessing (and requiring
in the system of inequalities) which components ofX are positive and which are zero; then it guesses a
subsetP ′ of places ofNX , verifies thatP ′ does not contain a trap inNX (which can be easily done in
polynomial time) and requires (in the constructed system of inequalities) thatM0 + CN · X is positive
for all places ofNX outsideP ′. ⊓⊔

In the next section we show the importance of the assumption of liveness.

5. More general nets

Here we study the complexity of the consistency, CSC, and USC problems formore general classes of
STGs.

By a straightforward use of standard techniques of Petri net theory (using the reachability problem
for k-bounded nets) we can show:

Proposition 5.1. The consistency problem, the CSC problem and the USC problem are PSPACE-complete
for k-bounded nets (for any fixedk).

The relevant proofs can be found in the appendix.
It is worth noting that free-choice does not make this simpler:

Proposition 5.2. The consistency problem for 1-bounded free-choice STGs (not necessarily live) is
PSPACE-complete.

Proof:
An arbitrary 1-bounded STG can be transformed into a 1-bounded free-choice STG by means of the
operation illustrated in Figure 8 while preserving consistency. (This operation is closely related to the
“releasing arcs”-technique, see e.g. [4].)

In more detail: For changing an arbitrary 1-bounded STG into a 1-bounded free-choice STG, we use
transformations of the following type:

• inside an original arc from a placep to a transitiont, insert a fresh labelf+ (i.e., add a new freshly
labelled transition and an additional place), and

• split t into t1, t2, adding a new placep′ and arcst1 → p′, p′ → t2, wheret1 (t2) inherits the current
input (output) places oft; put ℓ(t1) = ℓ(t) andℓ(t2) = f−.
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Figure 8. Transforming a 1-bounded STG into a 1-bounded free-choice STG

Figure 8 shows the result of two such transformations, wheref2 was inserted beforef1 (in fact, the
order of thef−

i labels is irrelevant);f−

2 now has the original output places ofl2.
Using sufficiently many such transformations, we can obviously transformeach 1-bounded STG

S = (N, M0, ℓ) into S = (N, M0, ℓ) which is 1-bounded and free-choice;M0 coincides withM0 on
places fromN and is 0 elsewhere.

An important observation is thatS is consistent iffS is consistent. To show this, it suffices to show
that using the described transformation, i.e., the step performed for one arc and changing an intermediate
S′ to S′′, keeps the (in)consistency untouched. We can easily note that ifS′ is inconsistent then so isS′′.
And 1-boundedness guarantees thatS′′ can not become inconsistent due to the addedf+, f−; thus an
inconsistency witness inS′′ naturally ‘translates’ intoS′. ⊓⊔

Using reductions from and to the reachability problem of general Petri nets, we can show

Proposition 5.3. The consistency problem and the CSC problem for general STGs are decidable but
EXPSPACE-hard.

The proofs are also in the appendix.

6. Conclusions and related work

We have explored the complexity of the consistency and the CSC problem forseveral classes of STGs.
The main result shows that deciding the CSC property is co-NP-complete even for 1-bounded and acyclic
marked graph STGs and for 1-bounded and live marked graph STGs. The same result holds for the USC
property. This result explains why none of the existing approaches forchecking the USC or the CSC
property in marked graph STGs is polynomial and complete.

In [14] the USC property was studied for live and 1-bounded marked graph STGs with injective
labelling (i.e., one up-transition and one down-transition per signal). A sufficient condition for the USC
property to hold is presented, and it is shown that it can be checked in polynomial time. The condition is
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conjectured to be also necessary, which would imply that checking the USC property is polynomial. The
reduction used in our NP-completeness result transforms a formula into an STG in which several signals
have two up- and two down-transitions, and so it does not apply to this case. The complexity of the USC
property for this particular case is left for future research.

In [16] the result of [14] is extended to the case where the STG may have several up- and down-
transitions per signal. The paper presents a generalization of the sufficient condition of [14]. Our NP-
completeness result shows that if P6=NP, then the condition is not necessary, or it cannot be checked
in polynomial time, or both. In fact, we conjecture that the condition is neither necessary, nor can be
checked in polynomial time (it requires to establish a property for a potentially exponential number of
objects).

In [17] it is shown that a live and 1-bounded marked-graph STG violatesthe USC property iff the
STG has a so-called complementary path. The paper proposes an algorithmthat searches for such paths.
The worst-case complexity of the algorithm is exponential, and by our resultthis is unavoidable unless
P=NP.

In [11] a polynomial algorithm is presented that detects all violations of the CSC property in a live
and bounded free-choice STG. However, the algorithm may also give false positives, i.e., it may detect
false violations. Our result shows that if P6=NP then every polynomial algorithm must produce false
positives or false negatives.

In [1] a procedure is described that, given a marked-graph STG, constructs in polynomial time an
Integer Linear Programming (ILP) problem such that the STG violates the CSC property if and only if
the problem has a solution. Our result shows that, unless P=NP, ILP is necessary, and cannot be replaced
by ordinary Linear Programming (recall that Linear Programming problems can be solved in polynomial
time).

In [9, 10] it is shown how to check the CSC property for arbitrary bounded STGs using net unfoldings
and ILP-solvers or SAT-solvers. Given a bounded STGS, an object is constructed called the unfolding of
S. This unfolding is used to generate an ILP problem (a boolean formula) such thatS violates the CSC
property iff the ILP problem has a solution (iff the formula is satisfiable). IfS is a live and 1-bounded
marked graph, then the unfolding ofS has polynomial size inS ([5], Theorem 4.14). This shows that,
even for marked graphs, ILP-solvers or SAT-solvers are unlikely to be replaceable by other tools with
polynomial running time: if P6=NP, then no polynomial algorithm taking the unfolding ofS as input can
decide the CSC or the USC property.

Finally, it could be argued that the important problem in practice is not to decide whether a given
STG satisfies the CSC property, but to transform an STG that does not satisfy the CSC property into
another one that does. In [2] an automatic, very efficient procedure for such a transformation is pre-
sented. Unfortunately, the procedure adds many additional signals (oneper place of the STG), and so
in most cases its output is only useful as a first approximation to the design. The optimization of this
first approximation has to be carried out by a (possibly automatic) trial and error procedure in which a
candidate for an optimized STG is guessed. The candidate must be checkedfor the CSC property, which
brings us back to the problem discussed in this paper.
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7. Appendix (Bounded nets and general nets)

This appendix provides proofs for the results mentioned in Section 5. I.e., itdemonstrates the hardness
of the consistency problem and the CSC problem in the general case, where the underlying net of an STG
can be an arbitrary Petri net, and in the subcase when a bound on the number of tokens in each place is
given (which can be viewed as ‘capacity’). This is done by showing suitable polynomial reductions from
the reachability problem to the consistency problem and to the CSC problem, respectively.

In fact, the reachability problem can also provide an upper bound, so theconsistency and CSC prob-
lems can be roughly viewed as equivalent with the reachability (w.r.t. the computational complexity).
We also clarify the case of consistency in more detail, by showing a relation to the fireability problem
(which is straightforwardly equivalent to the coverability problem).

The proof ideas use the usual techniques, so we do not describe them very formally nor in great detail.
For completeness, we start by recalling definitions and the known complexity results for reachability and
fireability. (Precise references can be found, e.g., in [6].)

Thereachability problem(RP)

Instance: a Petri net(N, M0) and a markingM .

Question: Is M0 −→∗ M?

Theorem 7.1. For (general) Petri nets, RP is decidable and EXPSPACE-hard. Fork-bounded nets (for
any fixedk), RP is PSPACE-complete.

Thefireability problem(FP)

Instance: a Petri net(N, M0) and a transitiont.

Question: Is t fireable (i.e., is there someM such thatM0 −→∗ M
t

−→)?

Theorem 7.2. For (general) Petri nets, FP is EXPSPACE-complete. Fork-bounded nets (for any fixed
k), FP is PSPACE-complete.

7.1. Nonreachability reduces to consistency

We show how an instance(N, M0), M1 of the reachability problem in general nets can be transformed
into an STG which is consistent if and only ifM1 is not reachable in(N, M0). Moreover, if(N, M0) is
1-bounded then the constructed STG is also 1-bounded. In addition, we clarify the difference between
conditions (1) and (2) of Proposition 2.1 on one hand and condition (3) onthe other hand. Conditions
(1), (2) turn out to be equivalent to the fireability problem; it is condition (3)which is as difficult as
reachability.

We start with a simple construction that we use several times:

Construction 1: Given a Petri net(N, M0), we denote byS(N,M0) the STG obtained as follows:

• As the set of signals ofS(N,M0) we take the set of transitions ofN .

• In N , we replace every transitiont by a placept and two transitionst1, t2, labelled byt+, t−,
respectively. Transitiont1 inherits the input places oft, and haspt as the unique output place;
transitiont2 haspt as the unique input place and inherits the output places oft.
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• We add a (run-)placer, and an arcr → t1 andt2 → r, for every transitiont of N .

• The initial marking ofS(N,M0) coincides withM0 on the places inherited fromN ; moreover,r
carries 1 token, and placespt are empty.

Observation 7.1. The STGS(N,M0) is consistent, and it tightly simulates the behaviour of(N, M0).

Proposition 7.1. The reachability problem for general Petri nets (fork-bounded Petri nets) is polyno-
mially reducible to the inconsistency problem for general STGs (fork-bounded STGs).

Proof:
Assume an instance of the reachability problem:(N, M0), M1. We consider the following construction
of an STGS:

• Start withS(N,M0) as described in Construction 1.

• Add a transitiontf labelled by a fresh labelf+, and an arc from (the run-place)r to tf . (Thus the
addedtf can fire at most once, by which a dead marking is reached, corresponding to a reachable
marking ofN .)

• Add a new (starting) places; the initial marking ofS will put 1 token in s; all other places
(includingr) will be initially empty.

• Add a transitionz1, labelled by a fresha+. It takes the token froms and installsM1 in the places
inherited fromN . (MarkingM1 thus becomes ‘frozen’.)

• Finally add transitionsz2, z3, labelled witha+ anda−, a placepz, and the arcs

s → z2(a
+) → pz → z3(a

−) → r

as well as additional arcs fromz3 which installM0 in the places inherited fromN .

We observe that the constructedS can start either with firingz1 (labela+), reaching the ‘frozen’M1, or
with firing z2z3 (a+a−) after which it behaves likeS(N,M0), with a possibility to ‘freeze’ any reachable
marking of(N, M0). We also note that if(N, M0) is k-bounded thenS is alsok-bounded.

It is clear thatS can not provide any inconsistency witness(M, a) of the form (1) and (2) of Propo-
sition 2.1; there might be a witness satisfying (3) but this happens if and only ifM1 is reachable in
(N, M0). ⊓⊔

The previous reduction was based on condition (3). For completeness, we show that the existence of
an inconsistency witness of form (1) or (2) is ‘easier’, namely polynomiallyequivalent to the fireability
problem.

Claim 7.1. The problem of deciding, given an STGS, if there is a pair(M, a) satisfying conditions (1)
or (2) of Proposition 2.1 is polynomially equivalent to the fireability problem.
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Proof:
We first show that the problem ifS provides a pair(M, a) satisfying (1) can be reduced to the fireability
problem.

Let us fixa (a signal), and define:

• S+
a is a ‘copy’ of S from which we remove all transitions labelled bya− together with their

adjacent arcs, and we add a (run-)placer+
a with 1 token. For every transitiont of S+

a which is not
labelled bya+ we add arcsr+

a → t, t → r+
a ; in the case oft labelleda+ we only addr+

a → t.

We observe thatS+
a behaves likeS until a first occurrence of ana-label; thisa-label must bea+, and the

computation ofS+
a is thus finished.

Similarly we proceed fora−:

• S−

a is a ‘copy’ of S from which we remove all transitions labelled bya+ together with their
adjacent arcs, and we add a (run-)placer−a with 1 token. For every transitiont of S−

a which is not
labelled bya− we add arcsr−a → t, t → r−a ; in the case oft labelleda− we only addr−a → t.

Now, we put the STGsS+
a andS−

a side by side. We add new placesp+
a andp−a , which are initially

empty, and a new transitiontaf with the arcsp+
a → taf andp−a → taf . Moreover, for eacht in S+

a labelled
by a+ we addt → p+

a , and for eacht in S−

a labelled bya− we addt → p−a .
We have thus got a Petri net(N, M0) wheretaf is fireable if and only if the initial markingM of S

satisfies (1).
To reach our goal, we further modify the net(N, M0):

• Add a new (run-)placer, initially with a token, and letr+
a , r−a be initially empty.

• For each transitiont of S, add an additional copy oft (to (N, M0)), with the arcsr → t, t → r.
For each arcp → t in S, add arcsp1 → t, p2 → t, wherep1 andp2 are the copies ofp in S+

a and
S−

a , respectively. Similarly for the output arcst → p.

• Finally add a transitionta, with the arcsr → ta, ta → r+
a , ta → r−a .

We observe that the arisen net(N ′, M ′

0) in the first phase simulatesS synchronously on both the places
in S+

a and the places inS−

a . To enabletaf , this first phase must stop by firingta (which unmarksr and
marksr+

a , r−a ). Transitiontaf can then indeed be enabled if and only if the correspondingM , reachable
in S and copied in bothS+

a andS−

a , satisfies (1).
Thus we have described a polynomial algorithm which, given an STGS and signala, constructs

(N ′, M ′

0) so thatS has an inconsistency witness(M, a) satisfying (1) iff taf is fireable in(N ′, M ′

0).

The construction can be completed by subnetsS+
b andS−

b for all signalsb, and some straightforward
modifications, one of them ensuring that firing anytbf will enable an additional distinguished transition
tf .

Using similar techniques, we can extend the overall construction to show that

there is a polynomial algorithm which, given an STGS, constructs a net(NS , MS), with a
distinguished transitiontf , so thatS has an inconsistency witness(M, a) satisfying (1) or
(2) iff tf is fireable in(NS , MS).
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For the other direction, assume an instance(N, M0), t of the fireability problem. We start with con-
structingS(N,M0) by Construction 1; then we add a new transitionz, whose only input place ispt and
whose label ist+. it is clear that the so constructed STGS has some(M, a) satisfying (1), or (2), ifft is
fireable in(N, M0). ⊓⊔

7.2. Nonreachability reduces to CSC

Proposition 7.2. The reachability problem for general Petri nets (fork-bounded Petri nets) is polyno-
mially reducible to the negation of the CSC problem for general STGs (fork-bounded STGs).

Proof:
We use the single-place-zero reachability problem. So an instance is(N, M0) and a placep0, and the
question is if there is a reachableM with M(p0) = 0. Given such an instance, we construct a (consistent)
STGS as follows:

• We start with the (consistent) STGS(N,M0) from Construction 1; recall that it has a run-placer.

• We now add two transitionst1 andt2, labelled with fresh signalsa+ anda−, respectively, two new
placesp1, r1, and the following arcs:

r → t1(a
+) → p1 → t2(a

−) → r1.

• We add another two transitionst3, t4, labelled with freshb+, b−, a placep2, and the depicted arcs:

r → t3(b
+) → p2 → t4(b

−), t4 → r1, t4 → p0

• Finally we add a new transitiont5 labelled byo+, whereo is defined as the only output signal; and
we add the arcsr1 → t5 andp0 → t5.

We observe that the constructedS is still consistent, we denote the consistent boolean encoding byb.
Now assume that(N, M0) can reachM such thatM(p0) = 0. Then inS = (N ′, M ′

0, ℓ) we have

• M ′

0 −→∗ M ′, whereM ′(p0) = 0,

• M ′ a+a−

−→ M1, whereM1(p0) = 0,

• M ′ b+b−
−→ M2, whereM2(p0) = 1,

SoM1 6= M2 and necessarilyb(M1) = b(M2); butM1 does not enableo+ andM2 does. HenceS does
not have the CSC property.

On the other hand, if all reachableM in (N, M0) satisfyM(p) ≥ 1, thenS obviously has the CSC
property.

Finally we note that if(N, M0) is k-bounded then the STGS is ‘almost’ k-bounded. The only
problem (increasing tok+1) can be caused by the arct4 → p0. But we can replace it by an arct4 → p′

for a new placep′, and add a further transitiont′5 labelled byo+, with the arcsr1 → t′5, p′ → t′5. ⊓⊔
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7.3. PSPACE-completeness for bounded nets

Let us considerk-bounded STGs. Propositions 7.1 and 7.2 show that both the consistency problem and
the CSC problem are PSPACE-hard. For showing that these problems arein PSPACE, it is sufficient to
consider nondeterministic algorithms for the complementary problems (recall that PSPACE=NPSPACE).
But such algorithms are obvious; so we have:

Proposition 7.3. Both the consistency problem and the CSC problem are PSPACE-complete for (explic-
itly) bounded nets.

7.4. Reduction to reachability

To provide some upper bound on the complexity of the consistency and CSC problems in the general case,
we show reductions to the reachability problem. By a reduction we mean showing how an instance (of the
consistency or CSC problem) can be answered by solving possibly several instances of the reachability
problem, all of them being constructed in polynomial time.

Proposition 7.4. The consistency problem (for general STGs) is reducible to the reachability problem.

Proof:
Due to Claim 7.1, it is sufficient to handle condition (3) of Proposition 2.1. Given an STG, to decide
if there is a markingM reachable byw1a

+u and byw2a
−v for somea-free sequencesu, v, we can

let run two copiesS′, S′′ of S independently (each having its own run-place).S′ has the possibility to
‘freeze’ a marking reached by a sequence wherea+ was the lasta-transition, whileS′′ has the possibility
to ‘freeze’ a marking reached by a sequence wherea− was the lasta-transition. In the final phase, the
markings in both copiesS′, S′′ will be ‘compared’: for each place ofS, a transition which takes a token
from bothp′ andp′′, which are the copies ofp in S′ andS′′, respectively, will fire as long as possible.
The everywhere-zero marking can thus be reached if and only if the markings reached inS′ andS′′

coincide. ⊓⊔

Proposition 7.5. The CSC problem (for general STGs) is reducible to the reachability problem.

Proof:
Let S = (N, M0, ℓ) be an STG (which can be supposed to be consistent). For each signala, we add
placespa+ andpa−, and we check which of the two signalsa+ anda− can be enabled first. In the first
case, we put 1 token inpa− and 0 tokens inpa+, and in the second case vice versa. We add further arcs,
such that eacha+-transition takes a token frompa− and puts a token inpa+, and eacha−-transition takes
one frompa+ and puts it inpa−.

So the modified net faithfully simulates the originalS; moreover, each reachable marking contains
explicit information about the current (consistent) binary encoding.

Again, we can use two copies ofS, use run-places for distinct phases of computation etc., such
that this allows to choose any two reachable markingsM1, M2, after which it will be guaranteed that a
specified (sub)marking will be reachable if and only ifM1 andM2 have the same binary encoding but
one of these markings enables a certain output signal while the other does not. (We can solve this for
each output signal separately.) ⊓⊔


