Fundamenta Informaticae 86 (2008) 227—-253
I0S Press

227

On the Complexity of Consistency and Complete State Coding for

Signal Transition Graphs

Javier Esparza

Institut fuer Informatik

Technische Universitaet Muenchen, Germany
esparza@in.tum.de

Alexander Miller

Institute for Formal Methods in Computer Science
Univ. Stuttgart, Germany
Alexander.Miller@informatik.uni-stuttgart.de

Petr Jancar'

Center of Applied Cybernetics
Dept of CS, TU Ostrava, Czechia
Petr.Jancar@vsb.cz

Abstract. Signal Transition Graphs (STGs) are a popular formalismHterspecification of asyn-
chronous circuits. A necessary condition for the implerabitity of an STG is the existence of a
consistent and complete state encoding. For an importaotass of STGs, the marked graph STGs,
we show that checking consistency is polynomial, but cheglthe existence of a complete state
coding is co-NP-complete. In fact, co-NP-completenessaaly holds for acyclic and 1-bounded
marked graph STGs and for live and 1-bounded marked grapts S8 add some relevant results

for free-choice, bounded, and general STGs.

Keywords:

1. Introduction

signal transition graphs, consistency, complete statengo®etri nets, complexity

Signal transition graphs (STGs) are a popular formalism for specifysggcronous circuits [3, 12].
They are Petri nets in which the firing of a transition is interpreted as risirfgliarg of a signal in
the circuit. Not every STG can be implemented as a physical circuit. A cenqtesdtion related to
implementability of an STG is whether it admits a so-caltedsistenandcomplete state codindviost

*This author was affiliated with the University of Stuttgart when this work wased
tThis author is supported by the Czech Ministry of Education, Grant NcdD38%

228 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

papers in the literature consider only the completeness part, assuming t8a@Qhs already consistent,
and call the existence of a complete state codin@B€ property This property, and the stronger unigue
state coding propertydSC propertyfor short) have been studied in many papers (see e.g. [1, 9, 10, 11,
14, 16, 17]).

In this paper we reason about the computational complexity of decidingvea @ TG has a consis-
tent and complete state coding, viewing the consistency problem sepak&ftehbtain new results for
STGs whose underlying nets are marked graphs and free-choicdaretsmpleteness, we also sketch
some straightforward results for STGs with more general underlying bets@led or even arbitrary).

We first explore the consistency problem for marked graph STGs. Jla pblynomial algorithm
was given to check consistency of live, bounded, and cyclic freécelSTGs, which include live and
bounded marked graph STGs as a subclass. Here we show that ecunysistpolynomial for arbitrary
marked graph STGs by means of a new algorithm based on linear programming

A natural question is whether these polynomiality results also hold for the C&SG problems
(i.e., the problems of checking the CSC or USC properties), at least fatabe of live and 1-bounded
marked graph STGs. Our main result shows that both problems are c@Nplete, and so that poly-
nomial algorithms are unlikely. This result explains why the algorithms of [1,09,11, 14, 16, 17]
have exponential runtime or can only decide some necessary or suftioraitions for the CSC or USC
properties to hold. These algorithms are discussed in detail in the finalrsectio

Our co-NP-completeness result is rather robust. We prove that the @EU02C problems remain
co-NP-hard for 1-bounded and acyclic marked graph STGs, anthiéaatemain in co-NP for arbitrary
marked graph STGs and for live and bounded free-choice STGs.

Moving to more general classes, we show that the consistency, CSC3gidblems are PSPACE-
complete for 1-bounded STGs, and that the consistency problem ren@RSCE-hard in the free-
choice case. Finally, we clarify the relation between the consistency, d&C3C problems for general
STGs, and the fireability and reachability problems for general Petri nets.

The paper is structured as follows. Section 2 presents basic definitiona elnaracterization of
consistency. Section 3 presents the results about marked-graphiS$®® core of the paper. Section 4
deals with free-choice and Section 5 with general STGs. Section 6 cootaichisions and discusses
related work.

Remark A preliminary version of this paper appeared as the conference fiper [

2. Basic definitions

A netis a triple(P, T, F'), whereP andT are disjoint sets oplacesandtransitions respectively, and
Fis afunction(P x T) U (T x P) — {0,1}. Places and transitions are generically calledes we
also note that a net can be viewed as a (bipartite) graph. Places ahicgligrepresented as circles;
transitions are usually drawn like boxes, but we just use their labels in thediglf 7'(x,y) = 1 then
we say that there is arc from x to y. Thepresetof a noder, denoted by z, is the set of itshput nodes
ie.,these{y € PUT | F(y,z) = 1}. Thepostsebf x, denoted by:*®, contains itoutput nodesi.e.,
these{fy ¢ PUT | F(x,y) = 1}.

A markingM of a net(P, T, F') is a mappingP® — IN (wherelN denotes the set of natural numbers
including 0). Graphically, a marking is represented by drawifi(p) tokens on the circle representing
the placep. A marking M enablesa transitiont if it puts at least one token on each place °¢, i.e.,

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 229

if M(p) > 1foreachp € *t. If t is enabled af\/, then it carfire (or occur) and its firing (occurrence)
leads toa new markingV/’, obtained by removing a token from each place in the presgtenfd adding
a token to each place in its postset; formally/,(p) = M (p) + F(t,p) — F(p, t) for every place. M -
denotes thatis enabled af\/, andM -5 M’ moreover denotes that firingeads toM’.

The notationV -—, M -Z5 M’ is extended to finite sequencese T* in the natural way. When
M-S M, for o = tits- - - t,, We speak of amccurrence sequence frol to M’, meaning the se-
quence

t t t
M- 2,

By the Parikh vectorof o € T*, denoted by or P(c), we mean the mapping (or the corresponding
vector)T' — IN such tha#(¢) is the number of occurrencesiin o.

Theincidence matrixof N is the matrixCy: P x T — {—1,0,+1} given byCn(p,t) = F(t,p) —
F(p,t). We note that i\ 7 M’ thenM + Cy - & = M.

A Petri netis a pair(N, M) whereN is a net and\/; is a marking ofN, called thenitial marking.
A marking M is calledreachableif there exists an occurrence sequence friinto M; we also denote
this by My —* M. We call

M() + CN - X >0

the marking inequation We note that\l, - M implies My + C - @ = M; & is thus a (nonnegative
integer) solution of the marking inequation.

A marking M of a netN is n-boundedif M (p) < n for every placep. A Petri net(N, M) is
n-bounded if all its reachable markings ardbounded.

A transitiont is fireablein (N, M) if there iso such thatVy - M andM L, APetri net(N, M)
is live if each transitiort is fireable in(V, M) for eachM reachable from/,. A transition isdeadat a
marking M if ¢ is not fireable i N, M).

A net N is called amarked graphif every place has at most one input and at most one output
transition. N = (P, T, F) is afree-choicenet if: for each place and every transition, if F(p,t) =1
thenF(p/,¢') = 1 for everyp’ € *t, ¢ € p®. In a free-choice net, if some output transition of a place
is enabled at a marking, then all its output transitions are enabled, and &sibleoto “freely” choose
among them.

Signal transition graphs. Let A = {a1,...,a,} be a set (alphabet) sgignalspartitioned intoinput
andoutputsignals. Rising and falling of a signals denoted by:™ anda—, respectively. (In some proofs
we also use the notatioha and—a, which is more convenient for using sub- and superscripts.) We calll
an element off = A x {4, —} alabel A signal transition grapn(STG) is a tripleS = (N, My, ¢),
where(NN, M) is a Petri net and is alabelling functionthat assigns to each transition dfa label in

L.

A signal transition graph is a specification of the behaviour of the circdeusome assumptions
on the environment. An STG is implementable if there exists siate coding mapping (we also
use the ternbinary encoding that associates with each reachable markih@ vector ofsignal values
A(M) € {0,1}™ satisfying the following two properties:

(1) Consistencylf M L, M’ andt is labelled bya., then thei-th components oA(M) and\(M’)
are0 and1, respectively, and all other components have the same valuglif) and\(M'). If ¢

230 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

is labelled bya; , then thei-th components ok(A/) andA(M’) arel and0, respectively, and all
other components have the same valug(ih/) and\(M').

(2) Completenessif two different reachable markingd/, M’ satisfy \(M) = A(M’), then they
enable exactly the same output labels.

Consistency is obviously necessary for implementability. Completeness issaggdecause the state
of an implementation is completely determined by the signal values of all signa¢ésefbre, if some
output signal is enabled &t/ but not atM’, thenM and M’ must correspond to different states of the
implementation, and so they must differ in the value of at least one signal.

We define theconsistency probleras the problem of deciding if a given STG is consistent, i.e., if it
admits a binary encodiny satisfying (1). The Complete State Coding probl&8C problenfor short,
is the problem to decide if a given STG (usually already assumed consistert)eCSC propertyi.e.,
admits a binary encoding satisfying (1) and (2). A stricter version iSI8€ problem(unique state
coding) where we ask if a given STG has th8C propertyi.e., admits arnnjectivebinary encoding\
satisfying (1) (thus\(M) # A(M’) for any two different reachabl&/, M’).

STGs naturally inherit many notions from their underlying (Petri) nets. Weadly used this when

speaking about ‘enabling a label’, e.ML (meaning thatM enables a transition with label™).
Thus we will freely speak aboui-bounded, live, marked graph, or free-choice STGs, etc. We can als
use notions like: is dead at\/ (meaning that each transition with lakel or o~ is dead at\7).

We also freely use notation likk/ — M’ for sequences of labels (meaning that there is a transition
sequence = tity - - - t,, such that - M’ andu = £(t,){(t3) - - - £(t,,,)). We can occasionally even
mix, and consider, as a sequence of transitions and labels, when this should not caussiocanfwe
also use expressions likeis a-free, meaning that there is a0 nora~ in «; and ifu contains transitions,
we mean that those transitions do not have labéls:—. Recall thatP(u) denotes the Parikh vector of
u; We denote byP(u)(a™) the number of transitions with labef" in w.

Finally we note that since the circuit implementation of an STG can be seen @s affiject with at
most2” states, where is the number of signals, STGs used in practice are bounded, most of them a
even 1-bounded; but in principle unbounded STGs can make sense.

We finish the section by a characterization of consistency, i.e., we look in dedad on when an
STG is inconsistent.

Proposition 2.1. An STGS = (N, My, ¢) is inconsistent (i.e., it admits no consistent binary encoding)
iff there is

apair(M,a) whereMy —* M anda is a signal
such that one of the following conditions holds:

(1) M enablesia™ andva™
for somea-free sequences, v,

(2) M enablesitua™ ora~ua™
for somea-free sequence,

(3) M is reachable byy,a™u and bywsa™v
for somea-free sequences, v (and somewy, ws).

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 231

Proof:

If there is a paif(M, a) such that one of the conditions holds thgis obviously inconsistent.
If there is no such pair then we can (soundly) define the following (padradpding):

For each reachabli&l and signak we put

e \(M)(a) = 0if M enablesia™ for ana-free sequence,
e \(M)(a) =1if M enablesia™ for ana-free sequence.
We note that it\(1/)(a) is (so far) undefined thef/ is a-dead; we then put

(

e \(M
e \(M)(a) = 0whenl can be reached bya™u for somea-free sequence,
e \(M

(M)(a) = AM(Mp)(a) otherwise (i.e., whed/ is reachable only by-free sequences); ¥/ =
My we defineh(Mp)(a) = 0 (we could use\(My)(a) = 1 as well here).

)(a) = 1 whenM can be reached hya™u for somea-free sequence,

One can easily check thatis a consistent binary encoding. O

3. Marked graphs

In this section we show that consistency can be decided in polynomial tim# foagked graph STGs
and that both the CSC problem and the USC problem are co-NP-complébeifor even in the case of
1-bounded acyclic marked graphs and in the case of live 1-boundéedgiraphs.

3.1. Consistency

In [7] it is shown that consistency of live, bounded, and cyclic freeice STGs can be decided in
polynomial time. (A Petri net isyclicif the initial marking is reachable from every reachable marking,
i.e., if it is always possible to return to the initial marking). Since live and bedndarked graphs are
always cyclic (see for instance [4]), and marked graphs are a $pas&@of free-choice nets, [7] provides
a polynomial algorithm deciding consistency of live and bounded marlaghgd TGs. We now show a
polynomial algorithm for all marked graph STGs.

We start by recalling some simple properties of marked graphs and desivgker variant of Propo-
sition 2.1, valid for marked graphs. One such property is thif #nables a sequence withoccurrences
of t and M — M for ¢/ # t thenM’ enables a sequence withoccurrences of as well; if ' = ¢ then
M’ enables a sequence with-1 occurrences of.

By P(u)(t) we denote the number of occurrenceg af a transition sequence (P stands for the
Parikh vector).

Claim 3.1. Let M be a marking of a marked graph. M — M, and M - M, then M — M’ for
somew and M’ such that
Vt : P(w)(t) = maz{P(u)(t), P(v)(t)}.

Moreover, if M; - and P(v)(t) < P(u)(t) thenM’ -5

232 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

Proof:
We can perform: and then a sequence consistingRifv) (t)— P (u)(t) occurrences of eadhfor which
P(u)(t) < P(v)(t). O

Slightly abusing notation, bywaz(u, v) we will denote thew guaranteed by the claim.

Proposition 3.1. A marked graph ST& = (N, My, ¢) is inconsistent iff one of the following condi-
tions holds:

(1) there is a reachabl&l (My—* M) such that
M -2, and M -“_ for some signak,

(2") there is a reachabl®/ such that
M atuat or M a ua

for some signat and some:-free sequence.

Proof:
If (1) or (2’) holds thenS' is obviously inconsistent.

Now assume tha$ is inconsistent. Then we know that there is a reachabland a signak such
that one of the conditions (1), (2), (3) of Proposition 2.1 holds. It iigaht to show that this implies
(1) or (2).

If (M, a) satisfies (2) then (2') holds. (fM, a) satisfies (1), i.eM 97, and M . for a-free

sequences, v, thenM —“““L, a1 and M’ —“Z, M’ ~— (recall Claim 3.1); thus (1) holds.
We finish by deriving a contradiction from the assumption that the inconsisteinS can not be
shown by using (1) nor (2) while we hay@/, a) satisfying (3). Hence

watov

Mo 2, M and M, M,

wherel(t1) = a™, {(t2) = a~, andu, v area-free.

Necessarily, all transitions labelled by or a~ are dead inV/—otherwise there would exi$f\/’, a)
satisfying (2). Thus bothy, ¢t are dead inM, which means thaty; contains the maximal possible
number of occurrences of, while wy contains the maximal possible number of occurrences.of

Let wy = witevy; Wherewv; is to-free. Similarlyws = wustivo Wherews is t1-free. We note that
P(uz)(t2) < P(u1)(t2), andP(u1)(t1) < P(uz)(t1).

mazx(ui,u2)

+ -
HenceM, M’ whereM’ enables botly andt,, so we have bott/’ —*— andM’ 2.
Thus(M’, a) satisfies (1)—a contradiction. 0

It is now sufficient to show that conditions (1’), (2’) of Proposition 3ahde checked in polynomial
time.

To this aim, we recall further useful observations about marked grapbsote that, given a marked
graph STGS = (N, My, ¢), we can check in polynomial time if there is a cycleNnwhich is not marked
at M (i.e., its places have no tokensii). The places of such a cycle can be safely removed, since no
transition in the cycle can ever occur.

We call a marked graphV, Mj) normalizedf every cycle inN is marked at\/.

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 233

Claim 3.2. Let (N, Mj) be a normalized marked graph, and consider the inequafips Cn - X > 0,
whereCl is the incidence matrix oV. An integer vectotXy > 0 is a solution of this inequation if and
only if M, - for a transition sequeneewhose Parikh vector i&.

Moreover, if My — M thenMy + Cy - Xo = M.

Proof:

The only nonobvious claim is that a solutidfy implies the existence of an appropriateBut this can
be done easily by induction diX|: among the transitionswith X,(¢) > 1, some must be enabled
at My—otherwise we would find a cycle unmarked Ary; we can fire such a transition and use the
induction hypothesis. O

Now we come to the polynomiality claims, which can be quickly established by usiegrlpro-
gramming (which is a well-known polynomial problem).

Proposition 3.2. For normalized marked graph STGs, checking (1’) of Proposition 3.Jbeastone in
polynomial time.

Proof:
LetS = (N, My, ¢) be a normalized marked graph STGSlfsatisfies (1') thenV contains transitions
t1, to With £(t1) = a™ and/(t2) = a~ such that there is for which

M-S M, M- M2

We note thatV/ > M, + M,, wherel; denotes the marking that puts one token in each input place of
t and no tokens elsewhere. The Parikh vectar &f thus a solution of the linear inequation

Mo+ Cn - X > My, + My,.

On the other hand, if the inequation has a nonnegative, rational solitidinen the integer vectgrX |
is also a solution, as one can easily check. Claim 3.2 then guarantees teae@xisf an appropriate,
meaning that satisfies (1).

Thus checking (1) can be done by solving the inequations for all gyate pairsy, ts. O

Proposition 3.3. For normalized marked graph STGs not satisfying (1'), checking @) fee done in
polynomial time.

Proof:
LetS = (N, My, ¢) be a normalized marked graph STG which does not satisfy (1'); i.e., cbab&)/
can enable both™ anda~. From this we can derive théb/y, a) does not satisfy (1) of Proposition 2.1.
Therefore, in every occurrence sequence containing occugehtiee signak, the first occurrence af
always has the same sign. Which sign thistisor —, can be determined very efficiently, e.g. by firing
any maximal transition sequence in which each transitio§ ofccurs at most once (such a sequence
contains all transitions that can ever be enabled).

Consider signak, and assume we have found that is fireable as the first af*, a~. (The case
with ¢~ being the first is similar.)

Let us now solve the linear programming problems

234 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

maximize f(X)
subjectto X >0, Myg+Cxn-X >0,

minimize f(Y)
subjectto Y >0, My+Cyn-Y >0,

where
(=3 xm- Y x@.
tel—1(at) tel=1(a™)

If we find that itis NOT the case that both problems have optimal solufiopsY,, with f(X,,) =1
andf(Y,,) = 0 then we claim ‘(2’) holds’.

To check (27), we run the above procedure for each signs¢parately, and claim that (2") holds
when one signal gives rise to this claim, otherwise we claim that (2") doelsatd. The overall time of
this algorithm is surely polynomial; it remains to show its correctness.

Let us again consider signawherea™ is fireable as the first (ef ", ™). It is obvious that condition
(2') holds for signala iff there is a transition sequenee with Parikh vectorX, such that\, -~ and
f(X) > 2 (there are twaz™’s without anya ™~ in-between) orf(X) < —1 (two a~'s without anya™
in-between).

So if (2") holds for signak then the procedure far surely gives rise to the claim ‘(2’) holds’.

If (2) does not hold fora then we havef (X) € {0, 1} for eachintegeradmissible solutioX (due
to Claim 3.2). We want to show that the procedure ddinds some optimal solution¥,,, Y, with
f(Xop) = 1andf(Y,,) = 0 (and thus does not give rise to the claim ‘(2’) holds’).

To see this, we recall that all solutions &f > 0, My + Cy - X > 0 constitute a polyhedron.
The optimal solutionsX,,,, Y,,, exist if and only if f(X) is bounded from above and from below on the
polyhedron, and then such solutions can be found in the extremal poimsfatt thatf(X) € {0,1}
for all integer X easily implies thaff (X)) is bounded for all (admissibleY; thus the optimal solutions
exist.

We now note that every row af'y contains at most one-1 and at most one-1, which means
that matrixC'y is (totally) unimodular. Hence the extremal points of the polyhedron are integéors
(cf. e.g. [13]). Thus the procedure forindeed finds some optimal solutiof,,,, Y, with f(X,,) =1
andf(Y,,) = 0. 0

Theorem 3.1. Consistency of marked graph STGs can be decided in polynomial time.

Proof:
The polynomial algorithm first normalizes the STG and then uses the algoritlenargeed by Proposi-
tions 3.2 and 3.3 to check if one of the conditions (1'), (2') of Propositidni®lds. O

3.2. Complete state coding

In this subsection we show the announced co-NP-completeness resthis @5 C problem and the USC
problem on (consistent) marked graph STGs.

The next lemma is the main technical result of the paper. We say that arremoeisequence is
balancedif for every signala the sequence contains the same number of occurrences of transitions
labelled bya™ and of transitions labelled hy~.

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 235

Lemma 3.1. The following problem is NP-complete:

Instance:a (consistent) STG = (V, My, ¢) such that IV, M) is a 1-bounded, acyclic marked graph.
Question: is there an occurrence sequendg —— M; — M, of S such thatr is nonempty and bal-
anced?

Proof:
Membership in NP is clear: In any nélV, M) which is 1-bounded and acyclic, each transition can
appear at most once in any occurrence sequence. So a nondeternailgistithm can just guess a
sequencerT of pairwise distinct transitions and verify that it is performable frafy and thatr is
nonempty and balanced.

The main point is NP-hardness, which we show by a reduction from CAIF{St » be a boolean
formula in conjunctive normal form

e with m clauses:, ..., ¢y,
e andn variablesry, ..., z,.

(E.g., formula(z, V T2 V z3) A (22 V 1) has 2 clauses and 4 variables.)

Our aim is to show a polynomial construction of a certain SIG= (N, My, ¢), with (N, M)
being a 1-bounded acyclic marked graph, so thad satisfiable iffS,, admits M 2 My = M, for
some sequence and some nonempty balanced sequence

The construction is based on the fact that there is a truth assignment

.A . {:Ul,wz,...,xn} — {0,1}
satisfyingy if and only if there is aconsistent choice of literal®y which we mean a mapping

l: {017027- ..,Cm} - {3317'7:717:1:27727" . 7xn7ﬁ}

attaching to each clause one of its literals, denotet{c;), in such a way thak(c;) # I(c;) for all i, j
(i.e., itis forbidden that one clause ‘choosesihile another clause ‘chooses).

We can easily observe that any consistent choice of litéralsturally provides a satisfying truth
assignmeni4 (which can be specified arbitrarily for variables not appearing in thgaah!); and any
satisfying truth assignment enables to define (maybe several) conshsb@rescof literals.

We now describe the ST&,, providing also informal comments which will ease the later correctness
proof. Figure 1 shows the overall structure%.

We need a few remarks about the notation. We consSuct (N, My, ¢) whereN is an acyclic
marked graph. All the minimal elements with respect to the flow relation will be plao® precisely
these places will be initially marked (i.e., each will carry one token). We saytlibee isan arc from
transitiont; to transitiont, when there is an (intermediate) placénitially unmarked) and arcg — p,

p — to. (This is, in fact, a usual convention which we also use for drawing ndegkaphs.)

Each symbol of Figure 1 (i.e., eadfy, ..., CZ) stands for an acyclic marked graph. The arrow
V} — Ng has the following meaning?} has a transition which is the unique maximal element i
(w.r.t. the order induced by the flow relatiodY; has a transitiom which is the unique minimal element
in Ng, and the (overall) ne¥ contains an arc leading frotrto « (with an intermediate place—using our
convention). The meaning of the other arrows in the structure is analogous

It will be clear (after we finish the construction) that any complete behawb, can be divided
into three phases:

236 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

v v
\ v
/ \
oy / \cf
oy cr

Figure 1. The overall structure 6f,

I first, all transitions iV}, ..., V2 CN, ..., CN occur,
II. then all transitions ofVg follow,
lll. and finally all transitions i/, ..., V2, CF,...,CE occur.

The complete behaviours 6F, differ only in the order in which transitions occur in the phases | and IIl.
We proceed to describe the marked graphs corresponding,te}, ..., V2, CN, ... CX. Since we
need to use both sub- and superscripts, we change the notation and-weted —a instead ofa™ and
a~. The netlVg, enabled after the whole phase | is finished, has one single (complete)idnah shown

in Figure 2.

2 ..

+$ 2! —2? . —2" —c; —cy - —cm —$

Figure 2. (Linear) behaviour d¥g

This means that the signal set®f contains (among others):
e a signalc; for every clausel(< i < m);

e asignalz’ for every variable{ < j < n);

e a (special) signa$.

Signal$ will not appear anywhere else butéy. It will be the case that any nonempty balanced sequence
must include all transitions aWVg, and so such a sequence will necessarily contain the whole phase II.

For the rest of the proof letal denote any non-empty and balanced sequence suchfhat

M, ﬂ>M2. In bal, each falling—z’ (1 < j < n) must be compensated by a raisirg’; the label

+27 will appear just on the maximal (i.e., the last) transitionl@f (cf. Figure 3) and on the minimal
(i.e., the first) transition o¥/}. (cf. Figure 4). So precisely one of the subn&fs V7, will contribute to
bal. We interpret this as ‘choosing’ a truth assignmgnt

Similarly, each falling—c; (1 < ¢ < m) must be compensated by a raiskrg;; the label+c¢; will
appear just once i@ and once inCY, now ‘almost’ as the last transition and ‘almost’ as the first

]

transition, respectively. Again, exactly one of the subigts C7 will contribute tobal.

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 237

Now we continue with the details of our construction. We extend the signaksetso far by

e a signalp{ for each pairi,j (1 < i < m, 1 < j < n) such that clause; contains literak:; (p
stands for ‘positive”);

e a signaln? for each pairi,j (1 <i < m, 1
stands for ‘negative’).

IN
.
N

< n) such that clause; contains literalz; (n

(As usual, we can assume that no clagsef formulay contains a complementary pair of literals.)
Givenj (1 < j < n), let{c;,ci,,...,ci, } be the set of clauses containing (the positive) literal
z;. The (sub)neV. (representing setting; to ‘true’) is depicted in Figure 3. Thug;. ‘emits’ labels

O—+7,
S~
5 A
-

(&O— 7,
Figure 3. The net}

+pl,,+pL,....+pl inany order, and then finishes by’
Now let{c, , ck,, - - ., ck, } De the set of clauses containing (the negative) litefalThe (sub)neVIfQ
(representing setting; to ‘false’) is depicted in Figure 4. Thus, after the labe} of Ng occurs,V}.

Figure 4. The net’},

‘emits’ label+2z7 and then Iabelsn‘,’;l, _”iy ..., —nj, in any order.

We now define the subne€s, CF. Recall that the sequende! will contain either transitions of
CN or CF, but not of both. This corresponds to ‘choosing’ either a positive oegative literal(c;)
from ¢;. Which literal is chosen will depend on which transitions of the corresipgnuet occur inbal,
and is explained later.

The netsCiN and Cf have no concurrency. They use additional ‘parenthetical’ signalge idce-
cisely, we enhance the signal set by

e a signaID{ for each pairi,j, 1 < i < mandl < j < n;, wheren; is the number of negative
literals in¢;;

238 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

e a signalA{ for each pairi,j, 1 < i < mandl < j < p;, wherep; is the number of positive
literals inc;.

Giveni (1 <i <m), let{z;,,7},,...,T;, } be the set of negative literals of the clause
The (sub)neC has a (marked) place as the least element (w.r.t. the flow relation). And ihe on
(complete) behaviour afY is the sequence of labels shown in Figure 5. The key observation is that if

1 j j 1 2 j j 2
-1 Ja— ja —1 ja
T ‘H:lza +TLZ ! —ng —Dza —H:lg —f—?”L'l7 +c; —Dg

Figure 5. (Linear) behaviour @V

the label+c; of C} belongs to the balanced sequereé thenbal must also contair-0¢, and thus,
by balancedness, alseJ¢. But thenbal also containst-n?*, and so it must also containn’*. If we
add the label-n’* of C to bal, then we are forced to add1%~! as well, and thus alse1¢~* and
+ng“*1; etc. So if labels of;‘iN occur inbal, thenbal contains an occurrence of somebf, wherez; is
a literal of¢;, such that the ‘balancing’ occurrence-efi/ does not come fror?Y, and so it must come
from V}'. We interpret this as ‘choosing’ the literaf of ¢;, i.e., as setting(c;) = z;.

The (sub)neCiP is similar. We let{zy, , z,, ...,z } be the set of positive literals of the clause
ci- The least element aff” (w.r.t. the flow relation) is a transition labelled &y} ; it follows from the
overall structure that this transition is enabled aftéroccurs. The only (complete) behaviour(df
(after being enabled) is the sequence of labels shown in Figure 6. Amdasen similarly as above. If

O e —pft — AL FAZ 4pf 2 AT LAY 4 —pl A
Figure 6. (Linear) behaviour af”

the label+c; from C£ belongs tobal, thenbal must also contain-A}, and thus alse-A! etc. So if
labels of X occur inbal, thenbal contains an occurrence of some?, wherez; is a literal ofc;, such
that the ‘balancing’ occurrencep! does not come fror’)Y, and so it must come froi;.. We interpret
this as ‘choosing’ the literat; of ¢;, i.e., as setting(c;) = x;.

For illustration, Figure 7 shows the ST§3, for a simple formulap. In fact, it is a slightly different
variant of S, using more concurrency and additional sigriels F7 which stress the correspondence
with setting variabler’ to true or false. (The shaded region shows a balanced sequench, withice
also discussed later.)

We have thus completed the (obviously polynomial) constructiof ofand we can easily check
that.S,, is a consistent 1-bounded acyclic marked graph. We have also prasade intuition why the
reduction works, i.e., why

o is satisfiable= S, admitsM, -~ M; — M for some nonempty balanced

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs

L
/N /N |

ez +nd | e +nd 44

N/ NS

Figure 7. STGS’SD for p = (1‘1 V Ty V 1‘3) A (171 V o \/fg)

239

240 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

Now we summarize the correctness arguments, first informally and then indetarié

If ©is satisfiable, then we ‘choose’ a satisfying truth assignnAesmd for each clausg we ‘choose’
a literal I; such that4 makesi; true, where ‘choose’ has the meaning described above. This leads
to a balanced sequenéel. On the other hand, if a balanced sequehgkcan be found, then the
corresponding ch0|ce of I|terals must be consistent (andrse satisfiable): if bothe; andz; are
‘chosen’, then both-n! and—p;, appear inbal, and bothV” anV] must contribute tdal, which, as we
have seen, is not p053|ble A more detailed formulatlon of these argumbaoissto

(“=") Suppose thaty is satisfiable; we shall show that there is an occurrence sequeycé-
M, = M, in S, such thatr is nonempty and balanced. Let

l : {617027"' 7cm} i {x17$717x27x727' * '7'%717@}

be a consistent choice of literals (which must exist sipdg satisfiable).
We now define certain sequenegsX), 7(X) for the appropriate subne®. The required sequence
o will then be defined as
o=0o(V})--a(VF)a(C) - a(CY),
andr will be defined as = 71 ™ 73, where

n=7(Vg)--7(V#)7(C) - 7(CY),
T2 = 7(Ng),
3 =1(Vp)- - T(VE) 7(CT) - -7(CY).
As expected, we define
7(Ng) = +$ —a'---—2" —¢;---—¢,, —$.
For eachy, 1 < j < n, we proceed as follows. If; is in the range of (z; was chosen by at least one

clause), we defme(V]) to be a sequence finishing Iay,rJ and otherwise consisting of precisely those
+p! for whichz; = i(c;); o(V;}) contains all others-p! appearing in/}.. And we definer(V}) as the
empty sequence.

If z; is in the range of, we defineo(VTj) to be a sequence containing all transitions (i.e., labels)
of V:ﬁ, and we define(Vﬁ) as empty. But now(VlfQ) is nonempty; it starts with-z; and otherwise
contains precisely thosen{ for whichz; = l(¢;).

The above definition is sound since bath z; can not belong to the range b{l is consistent). If
none ofz;, z; belongs to the range éf we can definer(Vji) as a sequence consisting ofalzb{ in VTj,
and we putr(V.) = +x; andr (V) empty.

Now for eachi, 1 < j < m, we proceed as follows. H(c;) = z; (thusT(Viﬂ) is nonempty), we
definer(CY) as the sequence

+A11 +c;- - —pfd —Agl,
wherek, = j (recall Figure 6); thus-c; and —p{ is left to be compensated inCY). And we define
o(C¥) as the whole behaviour ¢f¥, andr(C¥) as empty.

If I(¢;) = T (thus7(V}) is nonempty), we define

o(ClN) = +00 +nft - —nlt —O
() = +0¢ +nf* -+ +¢; —O,

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 241

wherej; = j (recall Figure 5); thustc; and+nff is left to be compensated inCF). And we define
7(CF) as empty.

It is now straightforward to check that the defined sequencean really occur from\/y, and that
7 is nonempty and balanced. (For egchl < i < m, eitherr(V}.) or 7(V}) is nonempty; thus the
occurrence-x7 of 7(Ng) is compensated. For eaghl < i < m, eitherr(CN) or 7(CF) is nonempty.
Suppose that it is(CY), the other case being similar. TheiC/) is balanced except of the two
‘superfluous’ occurrencestc; and+n{, wherel(c;) = T;. But+c¢; is compensated by-c; of 7(Ng),
and-+n/ is compensated byn! of 7(V}).)

Remark. The formulay of Figure 7 is satisfiable. The shaded region corresponds to the balance
sequence for the choic¢ér;) = 73, [(c2) = x; (and settinges to true).

(“<=") We now assume that there is an occurrence sequéfice’> M; —— M in S, such thatr is
nonempty and balanced; we shall show thas satisfiable. We can easily check thatust contain at
least one transition aWg; but this obviously implies that contains all transitions aW.

Hencer can be written

T = 7_{ Té Téa
where
75 =7(Ng) =48 —z' - —2™ —¢1--- —c; —8$.
For eachj, 1 < j < n, the occurrence-z’ in 75 must be compensated byx’ in eitherr{ or 73; so
precisely one of the nelzé} andvg' contributes tar. This naturally corresponds to a truth assignmént

For each, 1 < j < m, the occurrence-c; in 75 must be compensated ky; in eitherr{ or 7. Itis
thus clear that precisely one of the nét§ andC? contributes tor; in this contribution, precisely one
+n§ or —p{ respectively, is left to be compensated. This naturally defines a chidliterals /; we will
show that this choicéis consistent.

The only possibility how such a ‘superfluou{ahﬁ ({(¢;) = ;) is compensated im is by —nf in
V., which means that z; of V. appears i (i.e., A(z;) = 0). If itis —p/ which is to be compensated
(I(¢;) = z;), must containt-p] of V2, which means that-z; of V7. appears in- (i.e., A(z;) = 1).

This implies that the above mentioned choice of litetassindeed consistent, which means thds
satisfiable. O

The previous lemma is now used to derive the desired co-NP-hardisedts re

Proposition 3.4. Both the CSC problem and the USC problem are co-NP-hard for (conBiS€Gs
whose underlying nets are 1-bounded acyclic marked graphs.

Proof:
We use the ST, constructed in the proof of Lemma 3.1, recalling that it is a consistent lesalin
acyclic marked graph; let us denote its (unique) consistent binary ergcbgb.

Assume now thas$, does not have the USC property. This means that there are occusegnEnces

Mo -2 My, Mo -2 M,
such that

e M # M, (i.e.,o1 andoy do not contain the same transitions),

242 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

o b(My) = b(My).
We explore the following cases C1), C2), C3), covering all possibilities.

C1) One ofoq, o5 contains+$ but not—$ (turns out impossible):

In this case, botlr;, oo must contain+-$ and not—$ (sinceb(M;) = b(Ms)). (l.e., bothM,
M, are in the ‘middle segment’.) But this is impossible, since we obviously canrvet bath
M, 75 Mo andb(Ml) = b(MQ)

C2) Bothoy, o9 do not containt-$ or both contain-$ (turns out impossible):

Either bothM7, M, are in the ‘left segment’ or both are in the ‘right segment’. Let us assume the
subcase where both, o2 do not containt$ (i.e., both are in the ‘left segment’). We observe that
o1 ando, must contain the same transitionsigf, for eachj (sinceb(M;) = b(M>)).

So there must be a transition@’fv (for somei), which is, say, iro- but not inoy; i.e., o9 contains
a longer prefix of the behaviour 6tV (cf. Figure 5) thanr;. But then the difference between the
two prefixes must obviously be balanced, which can be easily checkedngdossible.

The subcase where both, o5 contain—$ can similarly be shown as impossible.

C3) One ofoq, 05 does not contair-$, and the other contains$:

We can assume that does not contair-$ ando, contains—$. (l.e., M is in the ‘left segment’,

M is in the ‘right segment’.) This implies that there is (a nonemptgjich that\, -~ M; —

Ms>; necessarilyr is balanced. And from the proof of Lemma 3.1 we know that this is possible if
and only ify is satisfiable.

Thus cases C1), C2) turn out to be impossible, and C3) is possible if and trere is a (nonemptyy
such that\ly —* M, — M>; necessarilyr is balanced. Moreover, sud;, M- (with b(M,y) = b(M3))
enable different sets of signals, so the CSC property is violated—whernngeall signals as output
signals. Therefore we can apply Lemma 3.1 to finish the proof. O

Proposition 3.5. Both the CSC problem and the USC problem are co-NP-hard for liveurdexd marked
graph STGs.

Proof:

Consider the USC problem. We reuse the Petrifiefrom the proof of Lemma 3.1. We note that the
behaviour obtained by firing all transitions 6§ is not balanced; i.eb(My) andb(My), whereb is the
consistent boolean encoding aht} is the final marking, differ on some signals.

Remark. For concreteness, these unbalanced signals‘are, n{d (ford = 2,3,...,q),
andpl (ford = 1,2,...,b—1).

We define a new STCS(D by adding a ‘final segment’ t6,: we add a fresh signat and construct a
linear’ net Ny with the behaviour

+fl byl —f,

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 243

where/; are the labels compensating the unbalancé gfthey include—z7, —¢;, +n{2, etc.; we note
that each nonempty sequence of transition&Vgfis unbalanced. The ne¥; will be prompted inS;,
after all transitions of5, occur; the final transition oV, will then restore the initial marking/j.

Hences; is an STG whose underlying net is a live and 1-bounded marked grajshedsy to see
that any sequence containing precisely one occurrence of eacihidxraoss; is balanced. Lel be the
unigue consistent boolean encodingﬁgf.

We show thatS, has the USC property itﬁ; has the USC property, which proves the second part of
the proposition.

It is trivial that if S, does not have the USC property, thﬁgg does not have it either. For the other
direction, assume th@{p does not have the USC property. Then therewgtaess of the USC-violation
i.e., two occurrence sequences

My -5 My, My -2 M,

as in the proof of Proposition 3.4.

Let us assume that the witnessnignimalin the sense that neithef nor oy can be shortened. We
prove that this minimal witness also corresponds to a USC-violation in the Retsin It suffices to
show that neithes; nor os contains a transition labelled by the sigrfal

Assume that one of; ando2, sayos, contains an occurrence of the sigrfal Sinced’(M;) =
b'(M>), we can easily check that the assumpfigid/,)(f) = 1 would forceM; = My, a contradiction.
Sol'(Ms)(f) = 0, which means that the last occurrencg @f o5 is — f. But thenos can be (rearranged
and) written asrs = o4o whereo contains precisely one occurrence of each transitioﬂ@f This

implies M 2, M>, which contradicts our minimality assumption.

Consider now the CSC property. Assume that all signals are output sigvaishow thatS,, has the
CSC property iffS{P has the CSC property. As in the USC case, it is trivial that ifdoes not have the
CSC property, thes;, does not have it either. For the other direction, asstibas the CSC property.
We have shown in Lemma 3.1 that in this cagehas the USC property as well. So, by the first part of
this proof concerning the USC properg, has the USC property. Since USC implies CSC has the
CSC property, and we are done. O

We now show the upper bound, a lemma which was already (implicitly) proved.in [

Lemma 3.2. Both the CSC problem and the USC problem are in co-NP for (boundedbmunded)
marked graph STGs.

Proof:
Let S = (IV, My, ¢) be a normalized and consistent marked graph STG. (We recall that teonyi®f.S
can be checked in polynomial time.) It is sufficient to deal with the CSC proliteatglaim for the USC
problem will follow easily.

We observe that does not have the CSC property if and only if there are sequencas such that

° MOL)M]_,MO&)MQ,
o My # Mo,
e for each signat:

P(uy)(a®) = P(u)(a”) = P(uz)(a") — P(uz)(a”),

244 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

e M, M5 enable different output signals.

To check that there is such a ‘CSC-violation’, a nondeterministic (polynomiigdrithm guesses a place
p such thatd/; (p) # Ma(p), and guesses further whethef; (p) > May(p) or Ma(p) > M;i(p) holds.
The algorithm proceeds to guess an output sighand which ofM;, Ms enables:. Assume w.l.0.g.
the guess is that/; enables: andM; does not. The algorithm guesses which place®/ptarry at least
one token (including all the input places of some transition labelled) land which places o/, carry
no token (including at least one input place of each transition labelled.byhe algorithm translates
all these guesses into a system of linear inequalities, guesses an intagjensa polynomial size, and
checks in polynomial time that it is indeed a solution. (Variables for transitiQunesgces are replaced by
variables for their Parikh vectors, and Claim 3.2 is used.) O

Putting together Propositions 3.4 and 3.5 and Lemma 3.2 we obtain:

Theorem 3.2. The CSC problem and the USC problem are co-NP-complete for markeld §ieGs, and
stay co-NP-hard for live and 1-bounded marked graph STGs as svédlrd-bounded acyclic marked
graph STGs.

Remark.Notice that in the marked graphs produced by the reduction from the pfaemma 3.1
there are different transitions carrying the same label. The case with wajéalielling (each transition
has its unique label) might well admit a polynomial algorithm but we leave thidgmobpen here.

4. Live and bounded free-choice nets

As already mentioned, [7] shows that consistency can be decided ingmoightime for live and bounded
free-choice STGs that are moreover cyclic, meaning that the initial markirgaghable from every
reachable marking. It is not known whether the polynomiality result still holtieifcyclicity condition
is removed, and we leave this problem open.

We now show co-NP-completeness of the CSC problem and of the US{eprédr live and bounded
free-choice STGs. Since live and bounded marked graphs are dyleiorem 3.2 gives co-NP-hardness
even forcyclic live and bounded free-choice STGs. So we just need to show that thel@mentary
problem is in NP. We proceed similarly as in the marked graph case, figdlingca known result analo-
gous to Claim 3.2; for this we use the following notation:

ForanetN = (P,T,F)andX : T — IN, we denote byNx = (Px,Tx, Fx) the subnet ofV
defined as followsTy is the set of transitions df for which X (¢) > 1, Py = *Tx U Ty, andFx is
the projection off" on (Px x Tx) U (T'x x Px). We also recall thaf) C P is atrapin N = (P, T, F)
if Q° C *Q. (If atrap is marked, i.e., has at least one token, it cannot be unmatked we consider
only nonempty traps) # (.

Lemma 4.1. ([15])
Let (N, Mp) be a live and bounded free-choice Petri net, and’letbe its incidence matrix. An integer
vector Xy > 0 is the Parikh vector of a transition sequence enablédgif and only if

1. My+Cy-Xo>0,and

2. M = My + Cy - Xo marks all traps ofVx,.

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 245

Theorem 4.1. The CSC problem and the USC problem are co-NP-complete for live aimtled free-
choice STGs.

Proof:
As mentioned above, co-NP-hardness follows from Theorem 3.2 (etem the Petri nets are also
cyclic).

A nondeterministic polynomial algorithm for showing that a given (consistérd)and bounded
free-choice STG does not have the CSC property (or the USC prymanmybe constructed as in the
proof of Lemma 3.2, using Lemma 4.1 instead of Claim 3.2.

A little difficulty is the fact that a (nonnegative integer) solution\df + C'y - X > 0 may not be the
Parikh vector of an occurrence sequence. The algorithm handlesabisem by guessing (and requiring
in the system of inequalities) which componentsiofire positive and which are zero; then it guesses a
subsetP’ of places ofNx, verifies thatP’ does not contain a trap iNx (which can be easily done in
polynomial time) and requires (in the constructed system of inequalities)that Cn - X is positive
for all places ofNx outsideP’. O

In the next section we show the importance of the assumption of liveness.

5. More general nets

Here we study the complexity of the consistency, CSC, and USC problemsoiar general classes of
STGs.

By a straightforward use of standard techniques of Petri net thesiigg(he reachability problem
for k-bounded nets) we can show:

Proposition 5.1. The consistency problem, the CSC problem and the USC problem are ES¢¥plete
for k-bounded nets (for any fixed).

The relevant proofs can be found in the appendix.
It is worth noting that free-choice does not make this simpler:

Proposition 5.2. The consistency problem for 1-bounded free-choice STGs (naissadly live) is
PSPACE-complete.

Proof:
An arbitrary 1-bounded STG can be transformed into a 1-boundeeth@iee STG by means of the
operation illustrated in Figure 8 while preserving consistency. (This Gparia closely related to the
“releasing arcs”-technique, see e.g. [4].)

In more detail: For changing an arbitrary 1-bounded STG into a 1-balinde-choice STG, we use
transformations of the following type:

e inside an original arc from a plageto a transitior, insert a fresh labef* (i.e., add a new freshly
labelled transition and an additional place), and

e splittintoty, to, adding a new placg and arcg; — p’, p’ — to, wheret; (t2) inherits the current
input (output) places of, put/(t;) = ¢(t) and{(t) = f~.

246 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

A
\/
lo
i
I

|

fy

ll lg l3 ll l3

Figure 8. Transforming a 1-bounded STG into a 1-boundeddheice STG

Figure 8 shows the result of two such transformations, wiigkeas inserted beforé; (in fact, the
order of thef;” labels is irrelevant)f,” now has the original output places/ef

Using sufficiently many such transformations, we can obviously transéaam 1-bounded STG
S = (N, My,?) into S = (N, My,) which is 1-bounded and free-choick{, coincides withM, on
places fromV and is O elsewhere.

An important observation is that is consistent iffS is consistent. To show this, it suffices to show
that using the described transformation, i.e., the step performed foroaadrchanging an intermediate
S’ 10 S”, keeps the (in)consistency untouched. We can easily note thaisiinconsistent then so 8.
And 1-boundedness guarantees thatcan not become inconsistent due to the ad@iédf—; thus an
inconsistency witness if” naturally ‘translates’ intc’. O

Using reductions from and to the reachability problem of general Pdgjwe can show

Proposition 5.3. The consistency problem and the CSC problem for general STGs eicgalk but
EXPSPACE-hard.

The proofs are also in the appendix.

6. Conclusions and related work

We have explored the complexity of the consistency and the CSC problesevieral classes of STGs.
The main result shows that deciding the CSC property is co-NP-completéavkbounded and acyclic
marked graph STGs and for 1-bounded and live marked graph ST@same result holds for the USC
property. This result explains why none of the existing approacheshiecking the USC or the CSC
property in marked graph STGs is polynomial and complete.

In [14] the USC property was studied for live and 1-bounded markeglgSTGs with injective
labelling (i.e., one up-transition and one down-transition per signal). Acgeriti condition for the USC
property to hold is presented, and it is shown that it can be checked ingnlgl time. The condition is

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 247

conjectured to be also necessary, which would imply that checking the Wsp@nty is polynomial. The
reduction used in our NP-completeness result transforms a formula infb@m3vhich several signals
have two up- and two down-transitions, and so it does not apply to this Taeecomplexity of the USC
property for this particular case is left for future research.

In [16] the result of [14] is extended to the case where the STG may lewezad up- and down-
transitions per signal. The paper presents a generalization of the sufficiedition of [14]. Our NP-
completeness result shows that #RP, then the condition is not necessary, or it cannot be checked
in polynomial time, or both. In fact, we conjecture that the condition is neitheessary, nor can be
checked in polynomial time (it requires to establish a property for a potentigligreential number of
objects).

In [17] it is shown that a live and 1-bounded marked-graph STG viokaed)SC property iff the
STG has a so-called complementary path. The paper proposes an algbetrsmarches for such paths.
The worst-case complexity of the algorithm is exponential, and by our rémssilis unavoidable unless
P=NP.

In [11] a polynomial algorithm is presented that detects all violations of thé @®perty in a live
and bounded free-choice STG. However, the algorithm may also dse ffasitives, i.e., it may detect
false violations. Our result shows that #ARP then every polynomial algorithm must produce false
positives or false negatives.

In [1] a procedure is described that, given a marked-graph STGtremts in polynomial time an
Integer Linear Programming (ILP) problem such that the STG violates tli@@&perty if and only if
the problem has a solution. Our result shows that, unles$m? ILP is necessary, and cannot be replaced
by ordinary Linear Programming (recall that Linear Programming problem®e solved in polynomial
time).

In[9, 10]itis shown how to check the CSC property for arbitrary bath8TGs using net unfoldings
and ILP-solvers or SAT-solvers. Given a bounded SY,@n object is constructed called the unfolding of
S. This unfolding is used to generate an ILP problem (a boolean formuth)thatS violates the CSC
property iff the ILP problem has a solution (iff the formula is satisfiable)S I§ a live and 1-bounded
marked graph, then the unfolding Sfhas polynomial size it$' ([5], Theorem 4.14). This shows that,
even for marked graphs, ILP-solvers or SAT-solvers are unlikelyetoeiplaceable by other tools with
polynomial running time: if ENP, then no polynomial algorithm taking the unfolding$#s input can
decide the CSC or the USC property.

Finally, it could be argued that the important problem in practice is not to degitether a given
STG satisfies the CSC property, but to transform an STG that doestisfy $he CSC property into
another one that does. In [2] an automatic, very efficient procedursuich a transformation is pre-
sented. Unfortunately, the procedure adds many additional signalgpésn@ace of the STG), and so
in most cases its output is only useful as a first approximation to the deshgmogtimization of this
first approximation has to be carried out by a (possibly automatic) trial aod grocedure in which a
candidate for an optimized STG is guessed. The candidate must be cleckedCSC property, which
brings us back to the problem discussed in this paper.

Acknowledgments. The first author thanks Jordi Cortadella and&l@zarmona for helpful discussions.
He also thanks the Alexander von Humboldt Foundation for supportingothyecation between univer-
sities in Stuttgart and Brno.

248

Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

Carmona, J., Cortadella, J.: ILP Models for the Synthe$iAsynchronous Control Circuit®003 Interna-
tional Conference on Computer-Aided Design (ICCAD’03)y&nber 9-13, 2003, San Jose, CA, UEEE
Computer Society / ACM, 2003, ISBN 1-58113-762-1.

Carmona, J., Cortadella, J., Pastor, E.: A structurabding technique for the synthesis of asynchronous
circuits, Proc. Int. Conf. on Application of Concurrency Theory tot8ysDesignlEEE Computer Society,
2001.

Chu, T.-A.: Synthesis of Self-Timed VLSI Circuits from Graph-theor8pecifications Ph.D. Thesis, MIT,
1987.

Desel, J., Esparza, Free Choice Petri Netsvol. 40 of Cambridge Tracts in Theoretical Computer Science
Cambridge University Press, 1995.

Esparza, J.: Model checking using net unfoldin§sjence of Computer Programmirgg, 1994, 151-195.

Esparza, J.: Decidability and Complexity of Petri NebBlems — an IntroductionlLectures on Petri Nets
I: Basic Models. Advances in Petri NeS. Rozenberg, W. Reisig, Eds.), number 1491 in Lecture Niote
Computer Science, 1998.

Esparza, J.: A Polynomial-Time Algorithm for Checkingistency of Free-Choice Signal Transition
Graphs,Fundamenta Informatica®2(2), 2004, 197-220.

Esparza, J., J&ar, P., Miller, A.: On the Complexity of Consistency and Guete State Coding for Signal
Transition GraphsProceedings of the 6th International Conference on Apfpiliceof Concurrency to System
Design (ACSD 2006)EEE Computer Society, Turku, Finland, June 2006.

Khomenko, V., Koutny, M., Yakovlev, A.: Detecting Sta@oding Conflicts in STGs Using Integer Pro-
gramming,Proc. of the Design, Automation and Test in Europe Conferemz Exhibition|[EEE Computer
Society, 2002.

Khomenko, V., Koutny, M., Yakovlev, A.: Detecting S¢éa€oding Conflicts in STG Unfoldings using SAT,
Proc. of the 4th Int. Conf. on Application of Concurrency ys®m DesignEEE Computer Society, 2004.

Pastor, E., Cortadella, J.: Polynomial algorithmstf@ synthesis for hazard-free circuits from signal transi-
tion graphs, 1993 International Conference on Computer-Aided Desi@CAD’'93), Santa Clara, CA, USA
IEEE Computer Society / ACM, 1993.

Rosenblum, L., Yakovlev, A.: Signal Graphs: from sétfied to timed onesProc. Int. Workshop on Timed
Petri nets IEEE Computer Society, 1985.

Schrijver, A.: Theory of Linear and Integer Programmin@Viley, 1986.

Vanbekbergen, P., Catthoor, F., Goossens, G., Man, .HOptimized synthesis of asynchronous control
circuits from graph-theoretic specificatiori990 International Conference on Computer-Aided Desi@n (|
CAD’90), IEEE Computer Society, 1990.

Yamasaki, H., Huang, J., Murata, T.: Reachability Ats#&d of Petri Nets via Structural and behavioral Clas-
sifications of TransitionsPetri Net Newsletter(60), 2001, 5-21.

Ykman-Couvreur, C., Lin, B., Goossens, G., Man, H. DyntBesis and optimization of asynchronous con-
trollers based on extended lock graph thedti, European Conference on Design Automation, Paris, Reanc
IEEE Computer Society, 1993.

Yu, M., Subrahmanyam, P.: A new approach for checkimguhique state coding property of signal transition
graphs,Proc. 3rd Int. European Conference on Design AutomatiBEE Computer Society, 1992.

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 249

7. Appendix (Bounded nets and general nets)

This appendix provides proofs for the results mentioned in Section 5. Ideribnstrates the hardness
of the consistency problem and the CSC problem in the general case thhainderlying net of an STG
can be an arbitrary Petri net, and in the subcase when a bound on themofniiikens in each place is
given (which can be viewed as ‘capacity’). This is done by showingsigitgolynomial reductions from
the reachability problem to the consistency problem and to the CSC problgpectively.

In fact, the reachability problem can also provide an upper bound, smtisstency and CSC prob-
lems can be roughly viewed as equivalent with the reachability (w.r.t. the datigmal complexity).
We also clarify the case of consistency in more detail, by showing a relatior tiirélability problem
(which is straightforwardly equivalent to the coverability problem).

The proofideas use the usual techniques, so we do not describeghgfavnally nor in great detail.
For completeness, we start by recalling definitions and the known complexitits for reachability and
fireability. (Precise references can be found, e.g., in [6].)

Thereachability problem(RP)

Instance a Petri ne{ NV, M,) and a marking\/.

Question Is My —* M?
Theorem 7.1. For (general) Petri nets, RP is decidable and EXPSPACE-hardk-Bounded nets (for
any fixedk), RP is PSPACE-complete.

Thefireability problem(FP)
Instance a Petri ne{ N, M) and a transition.

Question Is t fireable (i.e., is there som¥ such that\ly —* M L>)?

Theorem 7.2. For (general) Petri nets, FP is EXPSPACE-complete. fFbounded nets (for any fixed
k), FP is PSPACE-complete.

7.1. Nonreachability reduces to consistency

We show how an instandéV, M), M, of the reachability problem in general nets can be transformed
into an STG which is consistent if and onlyAf; is not reachable iV, M). Moreover, if (N, M) is
1-bounded then the constructed STG is also 1-bounded. In additiorlavify the difference between
conditions (1) and (2) of Proposition 2.1 on one hand and condition (3h®wther hand. Conditions
(1), (2) turn out to be equivalent to the fireability problem; it is conditionB)ch is as difficult as
reachability.

We start with a simple construction that we use several times:

Construction 1: Given a Petri netN, My), we denote by5(y 5,y the STG obtained as follows:
e Asthe set of signals of v, s, we take the set of transitions of.

e In N, we replace every transitionby a placep; and two transitionsy, ¢, labelled byt™, t—,
respectively. Transitiom; inherits the input places af and hag; as the unique output place;
transitiont, hasp; as the unique input place and inherits the output places of

250 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

e We add a (run-)place, and an are: — t; andt, — r, for every transitiort of V.

e The initial marking ofS(y 5z, coincides withM, on the places inherited fronV; moreover,r
carries 1 token, and placesare empty.

Observation 7.1. The STGS| v, IS consistent, and it tightly simulates the behaviou(8f Mj).

Proposition 7.1. The reachability problem for general Petri nets (febounded Petri nets) is polyno-
mially reducible to the inconsistency problem for general STGsKfbounded STGs).

Proof:
Assume an instance of the reachability probléi: M), M;. We consider the following construction
of an STGS:

e Start withSy »s,) as described in Construction 1.

e Add a transitiort s labelled by a fresh label™, and an arc from (the run-place}o ¢ ;. (Thus the
addedt ;s can fire at most once, by which a dead marking is reached, correésgdoca reachable
marking of V.)

e Add a new (starting) place; the initial marking of S will put 1 token ins; all other places
(includingr) will be initially empty.

¢ Add a transitionzy, labelled by a fresh*. It takes the token from and installs)/; in the places
inherited from/N. (Marking M; thus becomes ‘frozen’.)

e Finally add transitions,, z3, labelled witha™ anda~, a placep., and the arcs

s —20(a’) —=p, — 23(a”) =71

as well as additional arcs from which install M, in the places inherited fronv.

We observe that the construct8ctan start either with firing; (labela™), reaching the ‘frozenh;, or
with firing 2023 (a™a™) after which it behaves liké& (v, a1, With @ possibility to ‘freeze’ any reachable
marking of (N, Mj). We also note that if NV, M) is k-bounded thet$' is alsok-bounded.

It is clear thatS can not provide any inconsistency witn€dg, «) of the form (1) and (2) of Propo-
sition 2.1; there might be a witness satisfying (3) but this happens if and ol ifs reachable in
(N, My). g

The previous reduction was based on condition (3). For completenes$ow that the existence of
an inconsistency witness of form (1) or (2) is ‘easier’, namely polynometjyivalent to the fireability
problem.

Claim 7.1. The problem of deciding, given an ST&; if there is a pai(), a) satisfying conditions (1)
or (2) of Proposition 2.1 is polynomially equivalent to the fireability problem.

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 251

Proof:
We first show that the problem # provides a paif), a) satisfying (1) can be reduced to the fireability
problem.

Let us fixa (a signal), and define:

e Siis a ‘copy’ of S from which we remove all transitions labelled by together with their
adjacent arcs, and we add a (run-)plagewith 1 token. For every transitionof S;~ which is not
labelled bya™ we add arcs — ¢, ¢ — r; in the case of labelleda™ we only addr;} — ¢.

We observe that;" behaves like5 until a first occurrence of am-label; thisa-label must be:™, and the
computation ofS;" is thus finished.
Similarly we proceed fou~:

e S, is a ‘copy’ of S from which we remove all transitions labelled by together with their
adjacent arcs, and we add a (run-)plagewith 1 token. For every transitionof S which is not
labelled bya™ we add arcs, — t,t — r_; in the case of labelleda™ we only addr, — t.

Now, we put the STG$," and S, side by side. We add new placgs andp, , which are initially
empty, and a new transitiafj with the arcp — t¢ andp, — t%. Moreover, for eact in S labelled
by a™ we addt — p;, and for eaclt in S, labelled bya™ we addt — p .

We have thus got a Petri néwv, M) Wheret?c is fireable if and only if the initial marking/ of S
satisfies (1).

To reach our goal, we further modify the réX, My):

e Add a new (run-)place, initially with a token, and let;", r," be initially empty.

e For each transition of .S, add an additional copy df(to (N, My)), with the arcs" — ¢, t — r.
For each arp — tin S, add arce; — ¢, po — t, wherep; andp, are the copies gf in S and
S, , respectively. Similarly for the output are¢s— p.

e Finally add a transition,, with the arcs" — t,, t, — 75, ty — 7,

a -

We observe that the arisen n@{’, M) in the first phase simulate$s synchronously on both the places
in S and the places i$, . To enabletji, this first phase must stop by firirtg (which unmarks: and
marksr;, r.). Transitiont;‘c can then indeed be enabled if and only if the correspondingeachable
in S and copied in botl$;" andS;, satisfies (1).

Thus we have described a polynomial algorithm which, given an ST&xd signala, constructs
(N', Mg) so thatS has an inconsistency witne$s/, a) satisfying (1) iff¢§ is fireable in(N', Mg).
The construction can be completed by subrﬁtsand S, for all signalsb, and some straightforward
modifications, one of them ensuring that firing at(jlywill enable an additional distinguished transition
ts.

! Using similar techniques, we can extend the overall construction to show that

there is a polynomial algorithm which, given an SBGconstructs a ngtNg, Mg), with a
distinguished transitioti;, so thatS has an inconsistency witneéa/, a) satisfying (1) or
(2) iff ¢ is fireable in(Ng, Mg).

252 Esparza, Jadar, Miller/ Complexity of CS-coding for STGs

For the other direction, assume an instafde M), ¢ of the fireability problem. We start with con-
structingS v, a1,) by Construction 1; then we add a new transitigrwhose only input place is; and
whose label ig™. it is clear that the so constructed STFdas somé M, a) satisfying (1), or (2), ifft is
fireable in(N, My). 0

7.2. Nonreachability reduces to CSC

Proposition 7.2. The reachability problem for general Petri nets (febounded Petri nets) is polyno-
mially reducible to the negation of the CSC problem for general STGg(fwunded STGS).

Proof:

We use the single-place-zero reachability problem. So an instariéé &/;) and a placey, and the
question is if there is a reachahilé with M (pg) = 0. Given such an instance, we construct a (consistent)
STGS as follows:

o We start with the (consistent) ST& v 1, from Construction 1; recall that it has a run-place

¢ We now add two transitions andt,, labelled with fresh signals™ anda—, respectively, two new
placespy, r1, and the following arcs:

r— tl(cﬁ) — pp — ta(a”) — 7.

¢ We add another two transitiong, ¢4, labelled with fresth™, b—, a placeps, and the depicted arcs:

r—t3(b%) — pa — ta(b7), ta — 71, ts — Po

¢ Finally we add a new transitian labelled byo™, whereo is defined as the only output signal; and
we add the arcs; — t5 andpgy — ts.

We observe that the construct&ds still consistent, we denote the consistent boolean encodig by
Now assume thatlV, M) can reach/ such thatM (py) = 0. TheninS = (N, M|, ¢) we have

e M) —* M', whereM’(py) =0,
o MUY M, whereM; (pg) = 0,

o M AN My, whereMs(po) = 1,

So M; # M, and necessarily(M;) = b(M-); but M; does not enablet and M, does. HenceS does
not have the CSC property.

On the other hand, if all reachahbdé in (N, M) satisfy M (p) > 1, thenS obviously has the CSC
property.

Finally we note that if(/V, My) is k-bounded then the STG is ‘almost’ k-bounded. The only
problem (increasing té+1) can be caused by the atg— py. But we can replace it by an atg — p’
for a new place’, and add a further transitiafj labelled byo™, with the arce; — £, p’ — L. O

Esparza, Jagar, Miller/ Complexity of CS-coding for STGs 253

7.3. PSPACE-completeness for bounded nets

Let us considek-bounded STGs. Propositions 7.1 and 7.2 show that both the consistetdgm and

the CSC problem are PSPACE-hard. For showing that these problenmsRBEACE, it is sufficient to
consider nondeterministic algorithms for the complementary problems (reddHSiRACE=NPSPACE).
But such algorithms are obvious; so we have:

Proposition 7.3. Both the consistency problem and the CSC problem are PSPACE-complétrtc-
itly) bounded nets.

7.4. Reduction to reachability

To provide some upper bound on the complexity of the consistency and @8eims in the general case,
we show reductions to the reachability problem. By a reduction we mean gipbainan instance (of the
consistency or CSC problem) can be answered by solving possiblyasé&ances of the reachability
problem, all of them being constructed in polynomial time.

Proposition 7.4. The consistency problem (for general STGs) is reducible to the rb#itharoblem.

Proof:

Due to Claim 7.1, it is sufficient to handle condition (3) of Proposition 2.1.eGian STG, to decide
if there is a marking\/ reachable byw,a™u and bywsa~v for somea-free sequences, v, we can
let run two copiess’, S” of S independently (each having its own run-placg).has the possibility to
‘freeze’ a marking reached by a sequence wheravas the last-transition, whileS” has the possibility
to ‘freeze’ a marking reached by a sequence wlheravas the last-transition. In the final phase, the
markings in both copieS§’, S” will be ‘compared’: for each place &, a transition which takes a token
from bothp’ andp”, which are the copies of in S’ and.S”, respectively, will fire as long as possible.
The everywhere-zero marking can thus be reached if and only if theimyarkeached ir5” and S”
coincide. O

Proposition 7.5. The CSC problem (for general STGs) is reducible to the reachabilityigarob

Proof:

Let S = (N, My, ¢) be an STG (which can be supposed to be consistent). For each gjgmaladd
placesp,, andp,_, and we check which of the two signal$ anda™ can be enabled first. In the first
case, we put 1 token in,— and 0 tokens im,+, and in the second case vice versa. We add further arcs,
such that each™-transition takes a token frop,_ and puts a token ip, ., and each:. ™ -transition takes
one fromp,+ and puts it inp,—.

So the modified net faithfully simulates the origirtsl moreover, each reachable marking contains
explicit information about the current (consistent) binary encoding.

Again, we can use two copies &f, use run-places for distinct phases of computation etc., such
that this allows to choose any two reachable markihfs M-, after which it will be guaranteed that a
specified (sub)marking will be reachable if and onhf; and M/, have the same binary encoding but
one of these markings enables a certain output signal while the other dibe@\e can solve this for
each output signal separately.) O

