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Abstract

The border correlation function attaches to every word w a binary word β(w) of
the same length where the ith letter tells whether the ith conjugate w′ = vu of w = uv
is bordered or not. Let [u] denote the set of conjugates of the word w. We show that
for a 3-letter alphabet A, the set of β-images equals β(An) = B∗ \

([
abn−1

]
∪D

)
where D = {an} if n ∈ {5, 7, 9, 10, 14, 17}, and otherwise D = ∅. Hence the number
of β-images is Bn

3 = 2n − n−m, where m = 1 if n ∈ {5, 7, 9, 10, 14, 17} and m = 0
otherwise.

Keywords: combinatorics on words, border correlation, binary words, square-free, cycli-
cally square-free, Currie set,

1 Introduction

The border correlation function of a word was introduced by the present authors in [4],
where the binary case was considered in detail. In this paper we consider the case for
alphabets of size s ≥ 3. The border correlation function is related to the auto-correlation
function of Guibas and Odlyzko [3], as well as to the border-array function of Moore,
Smyth and Miller [7]. Border correlation of partial words have been recently considered
by Blanchet-Sadri et al. [1].

A word w ∈ A∗ is said to be bordered (or self-correlated [8]), if there exists a nonempty
word v, with v 6= w, such that w = u1v = vu2 for some words u1, u2. In this case v is a
border of w. A word that has a border is called bordered ; otherwise it is unbordered.

Let σ : A∗ → A∗ be the (cyclic) shift function, where σ(xw) = wx for all w ∈ A∗ and
x ∈ A, and σ(ε) = ε for the empty word ε. Let B = {a, b} be a special binary alphabet.
The border correlation function β : A∗ → B∗ is defined as follows. For the empty word,
let β(ε) = ε. For a word w ∈ A∗ of length n, let β(w) = c0c1 . . . cn−1 ∈ B∗ be the binary
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word of the same length such that

ci =

{
a if σi(w) is unbordered,

b if σi(w) is bordered.

Example 1. (1) Assume the word w is not primitive, i.e., w = uk (= uu . . . u), for some
power k ≥ 2. Then all words σi(w) are bordered, and thus β(w) = bn, where n is the
length of w.

(2) Consider the alphabet A = {a, b, c}, and let w = bacaba ∈ A∗. Then

i σi(w) border i σi(w) border
0 bacaba ba 3 ababac -
1 acabab - 4 babaca -
2 cababa - 5 abacab ab

and hence β(w) = baaaab. Note that a border need not be unique.

For an alphabet A, let A∗ denote the monoid of all finite words over A including the
empty word ε. Also, let An denote the set of words w ∈ A∗ of length n. In the binary
case, where we can choose A = B (= {a, b}), it was shown in [4] that the image β(w) of
w ∈ B∗ does not have two consecutive a’s except for some trivial cases. Hence, if σi(w) is
unbordered, then σi+1(w) is necessarily bordered. Also, in the binary case, there are other
‘exceptions’ , e.g., for no binary word w, it is the case that β(w) = abababbababb. It is an
open problem to characterize the set of the images β(w) for w ∈ B∗.

The words xy and yx are called conjugates of each other. We denote by [w] the set of
all conjugates of the word w. Note that if u and v are conjugates then v = σi(u) for some
i, and hence, for all words w,

β([w]) = [β(w)] . (1)

Let β(An) = {β(w) | w ∈ An} be the set of the β-images of the words of length n,
and denote by Bn

k the cardinality of β(An) where A is a k-letter alphabet. In the present
paper we prove the following result, where

C = {5, 7, 9, 10, 14, 17}

is the Currie set of integers.

Theorem 1. Let A be an alphabet of three letters, and let n ≥ 2. Then

β(An) =

{
B∗ \ [abn−1] if n /∈ C,

B∗ \ ([abn−1] ∪ {an}) if n ∈ C.

In particular, Bn
3 = 2n − n−m, where m = 1 if n ∈ C and m = 0 otherwise.
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We end this section with some definitions and notation needed in the rest of the paper.
We refer to Lothaire’s book [6] for more basic and general definitions of combinatorics on
words.

We denote the length of a word w by |w|. A word u is a factor of a word w ∈ A∗, if
w = w1uw2 for some words w1 ∈ A∗ and w2 ∈ A∗. A word w ∈ A∗ is said to be square-free,
if it does not have a factor of the form vv where v ∈ A∗ is nonempty. Moreover, w is
cyclically square-free, if all its conjugates are square-free.

2 The proof

This section let A = {a, b, c} be a ternary alphabet. Let T denote the Thue word obtained
by iterating the substitution ϕ : {a, b, c}∗ → {a, b, c}∗ determined by ϕ(a) = abc, ϕ(b) = ac
and ϕ(c) = b. Therefore T is the infinite word starting with

T = abcacbabcbacabcacbacabcba . . .

As was shown by Thue [9, 10] (see also Lothaire [5]), the word T is square-free, i.e., it
does not contain any nonempty factors of the form vv.

Recall that [w] denotes the conjugacy class of the word w. By the next lemma, each
primitive word has at least two unbordered conjugates.

Lemma 1. For all n ≥ 2, [abn−1] ∩ β(An) = ∅.

Proof. Assume a occurs in β(w) for a word w with |w| ≥ 2. Hence w is primitive. A
conjugate v of w is a Lyndon word if it is minimal in [w] with respect to some lexicographic
order of A∗. It is well known (see, e.g., Lothaire [6]), that each primitive word w has a
unique Lyndon conjugate with respect to a given order and that each Lyndon word is
unbordered. Hence, there exists at least two Lyndon words in [w] for a given order of A
and its inverse order, respectively. These two words imply that a occurs at least twice in
β(w).

The following result is due to Currie [2].

Theorem 2 (Currie). There exists a cyclically square-free word w ∈ An, if and only if
n 6∈ C = {5, 7, 9, 10, 14, 17}.

A square vv is called simple if v ∈ a∗ with v 6= ε. Let w(i) denote the i-th letter of w.

Lemma 2. Let w be a square-free word. Then w′ = wk1

(1)w
k2

(2) · · ·w
kn

(n) contains only simple
squares for all 1 ≤ i ≤ n and ki ≥ 1.

Proof. Suppose on the contrary that w′ contains a nonsimple square vv, say

v = b
pi+1

i+1 b
pi+2

i+2 · · · b
pi+j−1

i+j−1 b
pi+j

i+j

= b
pi+j+1

i+j+1 b
pi+j+2

i+j+2 · · · b
pi+2j−1

i+2j−1 b
pi+2j

i+2j
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with 0 ≤ i ≤ n − 2j and pi+1 ≤ ki+1 and pi+` = ki+` = ki+j+`−1, for all 2 ≤ ` < j, and
pi+j + pi+j+1 = ki+j and pi+j ≤ ki+2j−1 and bi+1 = bi+j = bi+2j = w(i+j) = w(i+2j−1) and
bi+` = bi+j+` = w(i+`) = w(i+j+`−1), for all 1 ≤ ` < j.

Observe that we obtain a square (bi+1bi+2 · · · bi+j−1)
2 from vv when all powers in vv

are reduced to 1 and the last letter is deleted. But now, we have that bi+1bi+2 · · · bi+j−1 =
w(i+1)w(i+2) · · ·w(i+j−1) = w(i+j)w(i+j+1) · · ·w(i+2j−2) implies a square in w; a contradiction.

Lemma 3. Let w be a cyclically square-free word of length n ≥ 2. Then for each nonempty
u ∈ {a, b}∗ that has exactly n occurrences of a, there exists a word w′ such that β(w′) = u.

Proof. By (1), we can assume without loss of generality that u begins with the let-
ter a. Let u = abk1abk2 · · · abkn where ki ≥ 0, for all 1 ≤ i ≤ n. By Lemma 2,
w′ = wk1+1

(1) wk2+1
(2) · · ·w

kn+1
(n) and all its conjugates contain only simple squares. That

is, if a conjugate wki+1
(i) w

ki+1+1
(i+1) · · ·w

kn+1
(n) wk1+1

(1) · · ·w
ki−1+1
(i−1) of w′ that starts and ends in dif-

ferent letters is bordered then w(i)w(i+1) · · ·w(n)w(1) · · ·w(i−1) is bordered contradicting the
fact that w is cyclically square-free. This means that every conjugate of w′ that starts and
ends in a different letter is unbordered and all other conjugates are, of course, bordered by
a border of length one. Hence, we have β(w′) = u which completes the proof.

Lemma 4. Let n ∈ C. Then u = abk1abk2 · · · abkn ∈ β(A∗) whenever u /∈ a∗.

Proof. Consider the following six words with lengths in C which have a unique border v
of length two or three (the borders are underlined):

5 : abcab

7: abcbabc

9: abcacbcab

10: abcacbacab

14: abcbacabacbabc

17: abcabacbcabcbacab

It is straightforward to check that for every word w in the list, each x ∈ [w] with x 6= w is
unbordered, i.e., there exists only one bordered word w in the conjugacy class [w] and w
has a unique border. This also implies that these words are square-free.

Let
u = abk1abk2 · · · abkn

as in the statement of the lemma.
We proceed by case distinction on |v| to show that for every n there exists a word w′

such that β(w′) = u except if k1 = k2 = · · · = kn for n equal to 5, 7, 9, 14, or 17, and
k1 = k3 = k5 = k7 = k9 and k2 = k4 = k6 = k8 = k10 for n = 10. The exceptional cases
are handled at the end of the proof.
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Let w ∈ A∗ be any square-free word having a unique border v such that each word
in [w] \ {w} is unbordered. Write w = w(1)w(2) . . . w(n), where again w(i) denotes the ith
letter of w.

Suppose first that |v| = 3 as in the case for 7 and 14. We can assume that v = abc
(possibly by renaming the letters); otherwise v would not be a unique border. Hence
w(1)w(2)w(3) = abc = w(n−2)w(n−1)w(n). Consider w′ = wk1+1

(1) wk2+1
(2) · · ·w

kn+1
(n) . Since exactly

one conjugate of w is bordered, the number of the letter a in the β-image equals n, if w′ is
unbordered. Now, w′ is unbordered if k2 6= kn−1, and in this case β(w′) = u. Note that,
by (1), it is enough to show that β(w′) = u′ for any conjugate u′ of u. In particular, we are

done if the powers ki can be cycled so that, for some j, the word w′′ = w
k′1+1

(1) w
k′2+1

(2) · · ·w
k′n+1
(n) ,

where k′i = ki+j mod n, is unbordered. It follows that, for the border length 3, the only cases
left in n ∈ C are when k1 = k2 = · · · = kn. (Note that the case n = 9, where n is divisible
by 3, is treated below.)

Suppose then that |v| = 2 as in the case for 5, 9, 10, and 17. We can assume that
v = ab (possibly after renaming of the letters), i.e., w(1)w(2) = ab = w(n−1)w(n). Consider

w′ = wk1+1
(1) wk2+1

(2) · · ·w
kn+1
(n) . We recall that w is the unique bordered word in its conjugacy

class. Now, w′ is unbordered if k1 > kn−1 or k2 < kn. Analogously to the above case with
|v| = 3 we can consider shifts of the indices modulo n. We conclude that w′ is bordered
for all possible shifts of k1, k2, . . . , kn only if k1 = k2 = · · · = kn or n is even; a case that
is avoided for |v| = 2 except for n = 10. If n = 10 then we are left with the case where
k1 = k3 = · · · = k9 and k2 = k4 = · · · = k10, where possibly k1 = k2.

It remains to be shown that u is a β-image if k1 = k2 = · · · = kn or k1 = k3 = · · · = k9

and k2 = k4 = · · · = kn, if n = 10, with ki ≥ 1 for all 1 ≤ i ≤ n. Let t = k1 + 1 and
s = k2 + 1. The following list gives a word for every n ∈ C such that the β-image is
(abt−1)n or (abt−1abs−1)5 in the case n = 10.

5 : atbtctatbct−1

7: atbtctbtatbtcbt−1

9: atctbtatbtctbtatcbt−1

10: ctbsatcsatbsctasctbas−1

14: btctbtatbtctatbtatctatbtctbt−1a

17: ctatbtctatctbtatbtctbtatctatbtctabt−1

This last claim can easily be verified by hand after noting that s, t > 1. This concludes
the proof.

We now show that almost all binary words of length n are β-images.

Proof of the main Theorem 1. Let u ∈ {a, b}∗ be a nonempty binary word of length n.
We proceed by a case distinction on the number ka of occurrences of the letter a in u.
Note that β(an) = bn for the case ka = 0 and the case ka = 1 does not exist; see Lemma 1.

Suppose ka ≥ 2. If ka 6∈ C then there exists a cyclically square-free word w in A∗

of length ka by Theorem 2, and Lemma 3 shows how to construct a word w′ such that
β(w′) = u.
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In the remaining case, where ka ∈ C, we have an 6∈ β(An) which explains the value
of m; otherwise a cyclically square-free word of length n ∈ C would contradict Theorem 2.
Lemma 4 shows that u is a β-image in the remaining cases.

Finally, by counting, we obtain the number of β-images: Bn
3 = 2n − n −m, where

m = 1 if n ∈ C and m = 0 otherwise.

3 The case of four and more letters

The exceptions in the Currie set disappear when the alphabet has at least four letters.

Theorem 3. Bn
k = 2n − n for all k > 3 and n ≥ 2.

Proof. It is sufficient to prove the claim for the alphabet of four letters, A = {a, b, c, d},
since Bn

4 = 2n − n implies Bn
k = 2n − n for all k > 3. The n exceptions are the binary

words of length n with only one letter a; see Lemma 1. We show that any binary word u
of length n, except abn−1 and its conjugates, is the β-image of a word over A. Note that
β(an) = bn. Let then u /∈ [abn−1], and suppose u has ka = m ≥ 2 occurrences of a. Let w
be the prefix of the square-free Thue word T of length m where the last letter is replaced
by d, that is, w = vd, where v is the prefix of T of length m− 1. Note that w is cyclically
square-free because no square occurs in the prefix v, and no square can contain the letter
d, since d occurs only once in u. Now, Lemma 3 implies the claim.
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