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Abstract

The border correlation function attaches to every word w a binary word S(w) of
the same length where the ith letter tells whether the ith conjugate w’ = vu of w = uv
is bordered or not. Let [u] denote the set of conjugates of the word w. We show that
for a 3-letter alphabet A, the set of [-images equals (A"™) = B*\ ([abn_l} U D)
where D = {a"} if n € {5,7,9,10, 14,17}, and otherwise D = (). Hence the number
of f-images is B = 2" —n —m, where m = 1if n € {5,7,9,10,14,17} and m =0
otherwise.

Keywords: combinatorics on words, border correlation, binary words, square-free, cycli-
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1 Introduction

The border correlation function of a word was introduced by the present authors in [4],
where the binary case was considered in detail. In this paper we consider the case for
alphabets of size s > 3. The border correlation function is related to the auto-correlation
function of Guibas and Odlyzko [3], as well as to the border-array function of Moore,
Smyth and Miller [7]. Border correlation of partial words have been recently considered
by Blanchet-Sadri et al. [1].

A word w € A* is said to be bordered (or self-correlated [8]), if there exists a nonempty
word v, with v # w, such that w = uyv = vus for some words uy, us. In this case v is a
border of w. A word that has a border is called bordered; otherwise it is unbordered.

Let o0: A* — A* be the (cyclic) shift function, where o(zw) = wz for all w € A* and
x € A, and o(e) = ¢ for the empty word e. Let B = {a,b} be a special binary alphabet.
The border correlation function §: A* — B* is defined as follows. For the empty word,
let G(e) = e. For a word w € A* of length n, let S(w) = cocy ... ¢,_1 € B* be the binary
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word of the same length such that

a if o'(w) is unbordered,
C; = .
b if o'(w) is bordered.

Example 1. (1) Assume the word w is not primitive, i.e., w = u* (= uu...u), for some
power k > 2. Then all words ¢‘(w) are bordered, and thus 3(w) = b", where n is the
length of w.

(2) Consider the alphabet A = {a, b, ¢}, and let w = bacaba € A*. Then

i | o'(w) | border | i | of(w) | border
0 | bacaba ba 3 | ababac -
1 | acabab - 4 | babaca -
2 | cababa - 5 | abacab ab

and hence G(w) = baaaab. Note that a border need not be unique.

For an alphabet A, let A* denote the monoid of all finite words over A including the
empty word . Also, let A™ denote the set of words w € A* of length n. In the binary
case, where we can choose A = B (= {a,b}), it was shown in [4] that the image 5(w) of
w € B* does not have two consecutive a’s except for some trivial cases. Hence, if o(w) is
unbordered, then o' (w) is necessarily bordered. Also, in the binary case, there are other
‘exceptions’ , e.g., for no binary word w, it is the case that G(w) = abababbababb. 1t is an
open problem to characterize the set of the images (w) for w € B*.

The words xy and yx are called conjugates of each other. We denote by [w] the set of
all conjugates of the word w. Note that if u and v are conjugates then v = o’ (u) for some
1, and hence, for all words w,

B([w]) = [B(w)]. (1)

Let G(A™) = {B(w) | w € A"} be the set of the S-images of the words of length n,
and denote by By the cardinality of 5(A") where A is a k-letter alphabet. In the present
paper we prove the following result, where

C=1{5,7,9,10,14,17}
is the Currie set of integers.

Theorem 1. Let A be an alphabet of three letters, and let n > 2. Then

B*\ [ab™!] ifn ¢ C,

") = {B* \ ([a0" U {a"}) ifneC.

In particular, By = 2" —n —m, where m =1 if n € C and m = 0 otherwise.
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We end this section with some definitions and notation needed in the rest of the paper.
We refer to Lothaire’s book [6] for more basic and general definitions of combinatorics on
words.

We denote the length of a word w by |w|. A word u is a factor of a word w € A*, if
w = wyuws for some words wy € A* and wy € A*. A word w € A* is said to be square-free,
if it does not have a factor of the form vv where v € A* is nonempty. Moreover, w is
cyclically square-free, if all its conjugates are square-free.

2 The proof

This section let A = {a,b, ¢} be a ternary alphabet. Let T denote the Thue word obtained
by iterating the substitution ¢: {a,b,c}* — {a,b, c}* determined by ¢(a) = abc, p(b) = ac
and ¢(c) = b. Therefore T is the infinite word starting with

T = abcacbabcbacabecacbacabeba . . .

As was shown by Thue [9, 10] (see also Lothaire [5]), the word T is square-free, i.e., it
does not contain any nonempty factors of the form vv.

Recall that [w] denotes the conjugacy class of the word w. By the next lemma, each
primitive word has at least two unbordered conjugates.

Lemma 1. For alln > 2, [ab"'| N 3(A™) = 0.

Proof. Assume a occurs in f(w) for a word w with |w| > 2. Hence w is primitive. A
conjugate v of w is a Lyndon word if it is minimal in [w] with respect to some lexicographic
order of A*. It is well known (see, e.g., Lothaire [6]), that each primitive word w has a
unique Lyndon conjugate with respect to a given order and that each Lyndon word is
unbordered. Hence, there exists at least two Lyndon words in [w] for a given order of A
and its inverse order, respectively. These two words imply that a occurs at least twice in

B(w). O
The following result is due to Currie [2].

Theorem 2 (Currie). There exists a cyclically square-free word w € A", if and only if
n¢gC=1{5791014,17}.

A square vv is called simple if v € a* with v # ¢. Let w(;) denote the i-th letter of w.

Lemma 2. Let w be a square-free word. Then w' = wfll)wg) » -wé“;) contains only simple
squares for all 1 <i<n and k; > 1.

Proof. Suppose on the contrary that w’ contains a nonsimple square vv, say

. i+17.Pi+2 Pit+j—173Pi+j
U= by b b

i+i—1 Yt
- bpi+j+1 bpi+j+2 . bpi+2j71 bpi+2j
= Yitj+1 Y442 i+25—1 Y425
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with 0 <4 <n —2j and pjy1 < kiy1 and piye = kive = Kipjyen, for all 2 < 0 < j, and
Pitj t Pivjr1 = kiyj and piyy < kipoj 1 and bipy = by = bite; = W(itj) = Wiy2j-1) and
bi+g = bi+j+g = W(it) = W(itj+e—1)s forall 1 </ < 7.

Observe that we obtain a square (b;1b;1o - - - ij,l)Q from vv when all powers in vv
are reduced to 1 and the last letter is deleted. But now, we have that b, 10;40 - bipj—1 =
Wit 1) W(i42) ** * W(itj—1) = W(ij)W(itj+1) * * * W(i+2j—2) implies a square in w; a contradiction.

O

Lemma 3. Let w be a cyclically square-free word of length n > 2. Then for each nonempty
u € {a,b}* that has exactly n occurrences of a, there exists a word w' such that f(w') = u.

Proof. By (1), we can assume without loss of generality that u begins with the let-
ter a. Let u = abab*-..-abf where k; > 0, for all 1 < ¢ < n. By Lemma 2,

w = wfll;“lwg;“l o -wé‘;;)ﬂ and all its conjugates contain only simple squares. That
is, if a conjugate wéi)ﬂwgﬂ;q . -wé":)ﬂwfll)ﬂ - -wgti;rl of w’ that starts and ends in dif-

ferent letters is bordered then wg;w(it1) - - - wyw() - - - w1 is bordered contradicting the
fact that w is cyclically square-free. This means that every conjugate of w’ that starts and
ends in a different letter is unbordered and all other conjugates are, of course, bordered by
a border of length one. Hence, we have 3(w’) = u which completes the proof. H

Lemma 4. Let n € C. Then u = ab*ab® - - - ab» € B(A*) whenever u ¢ a*.

Proof. Consider the following six words with lengths in C which have a unique border v
of length two or three (the borders are underlined):

5: abcab

7: abcbabe

9: abcacbcab

10: abcacbacab

14: abcbacabacbabe

17: abcabacbcabebacab

It is straightforward to check that for every word w in the list, each x € [w] with z # w is
unbordered, i.e., there exists only one bordered word w in the conjugacy class [w] and w
has a unique border. This also implies that these words are square-free.
Let
u = ab™ab™ - abM

as in the statement of the lemma.

We proceed by case distinction on |v| to show that for every n there exists a word w’
such that f(w') = u except if ky = kg = -+ =k, for n equal to 5, 7, 9, 14, or 17, and
ki = ks = ks = k; = kg and ky = ky = kg = ks = kyio for n = 10. The exceptional cases
are handled at the end of the proof.
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Let w € A* be any square-free word having a unique border v such that each word
in [w] \ {w} is unbordered. Write w = wyw(a) . .. W), where again w(;, denotes the ith
letter of w.

Suppose first that |[v| = 3 as in the case for 7 and 14. We can assume that v = abc
(possibly by renaming the letters); otherwise v would not be a unique border. Hence

WayWRyW3) = abc = W(n—2)W(n—1)Wr). Consider w’ = wfll)ﬂwé%ﬂ - -w?”“. Since exactly

n)
one conjugate of w is bordered, the number of the letter a in the S-image equals n, if w’ is
unbordered. Now, w’ is unbordered if ky # k,,_1, and in this case f(w’) = u. Note that,

by (1), it is enough to show that F(w’) = v’ for any conjugate v’ of u. In particular, we are

done if the powers k; can be cycled so that, for some 7, the word w” = wfl/l)ﬂwéé)ﬂ e wfﬁ)ﬂ,
where k] = Kitjmodn, is unbordered. It follows that, for the border length 3, the only cases
left in n € C are when ky; = ko = -+ = k,,. (Note that the case n =9, where n is divisible

by 3, is treated below.)

Suppose then that |v| = 2 as in the case for 5, 9, 10, and 17. We can assume that
v = ab (possibly after renaming of the letters), i.e., waywep) = ab = w(p—1)we). Consider
w' = wff;“lwg;“l - -wéj)ﬂ. We recall that w is the unique bordered word in its conjugacy
class. Now, w’ is unbordered if k; > k,,_1 or ky < k,,. Analogously to the above case with
|v| = 3 we can consider shifts of the indices modulo n. We conclude that w' is bordered
for all possible shifts of k1, ks, ..., k, only if k; = ky = --- =k, or n is even; a case that
is avoided for |v| = 2 except for n = 10. If n = 10 then we are left with the case where
ki =ks=---=kg and ky = k4 = --- = k19, where possibly k; = ks.

It remains to be shown that u is a S-image if ky = ko =--- =k, or ky = ks =--- = kg
and ky = ky = ---=k,,if n =10, with k;, > 1 forall 1 <i<n. Let t = k4 + 1 and
s = ko + 1. The following list gives a word for every n € C such that the (-image is
(abt= 1™ or (abt~tab*™')® in the case n = 10.

5: a'b'ctalbe™!
7: atbicbtatbiebt™!
9: a'c'la’t'ctbtatebt !
10: dv*atcta’bicta’ctba!
14: bctvtatvidatblalctalbicdtb " a
17: calbictalcblalbictblalctalblctab' ™!
This last claim can easily be verified by hand after noting that s,¢ > 1. This concludes
the proof. n

We now show that almost all binary words of length n are S-images.

Proof of the main Theorem 1. Let u € {a,b}* be a nonempty binary word of length n.
We proceed by a case distinction on the number k, of occurrences of the letter a in wu.
Note that 3(a™) = b" for the case k, = 0 and the case k, = 1 does not exist; see Lemma 1.

Suppose k, > 2. If k, € C then there exists a cyclically square-free word w in A*
of length k, by Theorem 2, and Lemma 3 shows how to construct a word w’ such that

Bw') = u.
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In the remaining case, where k, € C, we have a" ¢ 3(A") which explains the value
of m; otherwise a cyclically square-free word of length n € C would contradict Theorem 2.
Lemma 4 shows that u is a S-image in the remaining cases.

Finally, by counting, we obtain the number of S-images: B} = 2" —n — m, where
m =1if n € C and m = 0 otherwise. m

3 The case of four and more letters

The exceptions in the Currie set disappear when the alphabet has at least four letters.
Theorem 3. B =2" —n for all k > 3 and n > 2.

Proof. 1t is sufficient to prove the claim for the alphabet of four letters, A = {a,b, ¢, d},
since B} = 2" —n implies B} = 2" —n for all £ > 3. The n exceptions are the binary
words of length n with only one letter a; see Lemma 1. We show that any binary word u
of length n, except ab” ! and its conjugates, is the S-image of a word over A. Note that
B(a™) = b". Let then u ¢ [ab"!], and suppose u has k, = m > 2 occurrences of a. Let w
be the prefix of the square-free Thue word T of length m where the last letter is replaced
by d, that is, w = vd, where v is the prefix of T of length m — 1. Note that w is cyclically
square-free because no square occurs in the prefix v, and no square can contain the letter
d, since d occurs only once in u. Now, Lemma 3 implies the claim. O]
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