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Abstract

Finite words and their overlap properties are considered in this paper.

Let w be a finite word of length n with period p and where the maximum

length of its unbordered factors equals k. A word is called unbordered if

it possesses no proper prefix that is also a suffix of that word. Suppose

k < p in w. It is known that n ≤ 2k − 2, if w has an unbordered prefix

u of length k. We show that, if n = 2k − 2 then u ends in abi, with two

different letters a and b and i ≥ 1, and bi occurs exactly once in w. This

answers a conjecture by Harju and the second author of this paper about

a structural property of maximum Duval extensions. Moreover, we show

here that i < k/3, which in turn leads us to the solution of a special case

of a problem raised by Ehrenfeucht and Silberger in 1979.

1 Introduction

Overlaps are one of the central combinatorial properties of words. Despite the
simplicity of this concept, its nature is not very well understood and many funda-
mental questions are still open. For example, problems on the relation between
the period of a word, measuring the self-overlap of a word, and the lengths of
its unbordered factors, representing the absence of overlaps, are unsolved. The
focus of this paper is on the investigation of such questions. In particular, we
consider so called Duval extensions by solving a conjecture [6, 4] about the struc-
ture of maximum Duval extensions. This result leads us to a partial answer of
a problem raised by Ehrenfeucht and Silberger [5] in 1979.

When repetitions in words are considered then two notions are central: the
period, which gives the least amount by which a word has to be shifted in
order to overlap with itself, and the shortest border, which denotes the least
(nonempty) overlap of a word with itself. Both notions are related in several
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ways, for example, the length of the shortest border of a word w is not larger
than the period of w, and hence, the period of an unbordered word is its length,
moreover, the shortest border itself is always unbordered. Deeper dependencies
between the period of a word and its unbordered factors have been investigated
for decades; see also the references to related work below.

Let a word w be called a Duval extension of u, if w = uv such that u is
unbordered and for every unbordered factor x of w holds |x| ≤ |u|. Let π(w)
denote the shortest period of a word w. A Duval extension is called nontrivial
if |u| < π(w). It is known that |v| ≤ |u| − 2 for any nontrivial Duval extension
uv [8, 9, 10]. This bound is tight, that is, Duval extensions with |v| = |u| − 2
exist. Let those be called maximum Duval extensions. The following conjecture
has been raised in [6]; see also [4].

Conjecture 1. Let uv be a maximum Duval extension of u = u′abi where i ≥ 1
and a and b are different letters. Then bi occurs only once in uv.

This conjecture is answered positively by Theorem 3 in this paper. Moreover,
we show that i < |u|/3 in Theorem 4, which leads us to the result that a word
z with unbordered factors of length at most k and π(z) > k that contains
a maximum Duval extension uv with |u| = k is of length at most 7k/3−2. This
solves a special case of a conjecture in [5, 1].

Previous Work. In 1979 Ehrenfeucht and Silberger [5] raised the problem
about the maximum length of a word w, w.r.t. the length k of its longest unbor-
dered factor, such that k is shorter than the period π(w) of w. They conjectured
that |w| ≥ 2k implies k = π(w) where |w| denotes the length of w. That conjec-
ture was falsified shortly thereafter by Assous and Pouzet [1] by the following
example:

w = anban+1banban+2banban+1ban

where n ≥ 1 and k = 3n + 6 and π(w) = 4n + 7 and |w| = 7n + 10, that is,
k < π(w) and |w| = 7k/3−4 > 2k. Assous and Pouzet in turn conjectured that
3k is the bound on the length of w for establishing k = π(w). Duval [3] did the
next step towards solving the problem. He established that |w| ≥ 4k−6 implies
k = π(w) and conjectures that, if w possesses an unbordered prefix of length
k, then |w| ≥ 2k implies k = π(w). Note that a positive answer to Duval’s
conjecture yields the bound 3k for the general question. Despite some partial
results [11, 4, 7] towards a solution, Duval’s conjecture was only solved in 2004
[8, 9] with a new proof given in [10]. The proof of (the extended version of)
Duval’s conjecture lowered the bound for Ehrenfeucht and Silberger’s problem
to 3k − 2 as conjectured by Assous and Pouzet [1]. However, there remains
a gap of k/3 between that bound and the largest known example, which is
given above. With this paper we take the next step towards the solution of
the problem by Ehrenfeucht and Silberger by establishing the optimal bound of
7k/3 for a special case.
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2 Notation and Basic Facts

Let us fix a finite set A, called alphabet, of letters. Let A∗ denote the monoid
of all finite words over A including the empty word denoted by ε. In general,
we denote variables over A by a, b, c, d and e and variables over A∗ are usually
denoted by f , g, h, r through z, and α, β, and γ including their subscripted and
primed versions. The letters i through q are to range over the set of nonnegative
integers.

Let w = a1a2 · · ·an. The word anan−1 · · ·a1 is called the reversal of w
denoted by w. We denote the length n of w by |w|, in particular |ε| = 0. If w
is not empty, then let •w = a2 · · ·an−1an and w• = a1a2 · · · an−1. We define
•ε = ε• = ε. Let 0 ≤ i ≤ n. Then u = a1a2 · · ·ai is called a prefix of w, denoted
by u ≤p w, and v = ai+1ai+2 · · ·an is called a suffix of w, denoted by v ≤s w.
A prefix or suffix is called proper when 0 < i < n. An integer 1 ≤ p ≤ n is
a period of w if ai = ai+p for all 1 ≤ i ≤ n − p. The smallest period of w is
called the period of w, denoted by π(w). A nonempty word u is called a border
of a word w, if w = uy = zu for some words y and z. We call w bordered, if it
has a border that is shorter than w, otherwise w is called unbordered. Note that
every bordered word w has a minimum border u such that w = uvu, where u is
unbordered.

Let ⊳ be a total order on A. Then ⊳ extends to a lexicographic order, also
denoted by ⊳, on A∗ with u ⊳ v if either u ≤p v or xa ≤p u and xb ≤p v and
a ⊳ b. Let ⊳ denote a lexicographic order on the reversals, that is, u ⊳ v if
u ⊳ v. Let ⊳

a and ⊳b and ⊳
a
b denote lexicographic orders where the maximum

letter or the minimum letter or both are fixed in the respective orders on A. We
establish the following convention for the rest of this paper: in the context of
a given order ⊳ on A, we denote the inverse order of ⊳ by ◭. A ⊳-maximal
prefix (suffix) α of a word w is defined as a prefix (suffix) of w such that v ⊳ α
(v ⊳ α) for all v ≤p w (v ≤s w).

The notion of maximum pre- and suffix are symmetric. It is general prac-
tice that facts involving the maximum ends of words are mostly formulated for
maximum suffixes. The analogue version involving maximum prefixes is tacitly
assumed.

Remark 1. Any maximum suffix of a word w is longer than |w| − π(w) and
occurs only once in w.

Indeed, let α be the ⊳-maximal suffix of u for some order ⊳. Then u = xαy
and α ⊳ αy implies y = ε by the maximality of α. If w = uvα with |v| = π(w),
then uα ≤p w gives a contradiction again.

Let an integer q with 0 ≤ q < |w| be called point in w. A nonempty word
x is called a repetition word at point q if w = uv with |u| = q and there exist
words y and z such that x ≤s yu and x ≤p vz. Let π(w, q) denote the length
of the shortest repetition word at point q in w. We call π(w, q) the local period
at point q in w. Note that the repetition word of length π(w, q) at point q
is necessarily unbordered and π(w, q) ≤ π(w). A factorization w = uv, with
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u, v 6= ε and |u| = q, is called critical, if π(w, q) = π(w), and if this holds, then
q is called a critical point.

Let ⊳ be an order on A. Then the shorter of the ⊳-maximal suffix and
the ◭-maximal suffix of some word w is called a critical suffix of w. Similarly,
we define a critical prefix of w by the shorter of the two maximum prefixes
resulting from some order and its inverse. This notation is justified by the
following formulation of the so called critical factorization theorem (CFT) [2],
which relates maximum suffixes and critical points.

Theorem 1 (CFT). Let w ∈ A∗ be a nonempty word and γ be a critical suffix
of w. Then |w| − |γ| is a critical point.

Let uv be a Duval extension of u if u is an unbordered word and every factor
in uv longer than |u| is bordered. A Duval extension uv of u is called trivial if
v ≤p u. The following fact was conjectured in [3] and proven in [8, 9, 10].

Theorem 2. Let uv be a nontrivial Duval extension of u. Then |v| ≤ |u| − 2.

Following Theorem 2 let a maximum Duval extension of u be a nontrivial
Duval extension uv with |v| = |u| − 2. This length constraint on v will often
tacitly be used in the rest of this paper.

Let wuv be an Ehrenfeucht-Silberger extension of u if both uv and wu are
Duval extensions of u and u, respectively, moreover, uv and wu are called the
Duval extensions corresponding to the Ehrenfeucht-Silberger extension of u.

Ehrenfeucht and Silberger were the first to investigate the bound on the
length of a word w, w.r.t. the length k of its longest unbordered factors, such
that k < π(w). Some bounds have been conjectured. The latest such conjecture
is taken from [9].

Conjecture 2. Let wuv be a nontrivial Ehrenfeucht-Silberger extension of u.
Then |wv| < 4

3
|u|.

3 Periods and Maximum Suffixes

Note the following simple but noteworthy fact.

Lemma 1. Let u be an unbordered word, and let v be a word that does not
contain u. Let α be the ⊳-maximal suffix of u. Then any prefix w of uv such
that α is a suffix of w, is unbordered.

Proof. Certainly, |w| ≥ |u| by Remark 1. Suppose that w has a shortest border h.
Then |h| < |u| otherwise u ≤p h and u occurs in v since h is the shortest border;
a contradiction. But now, h is a border of u; again a contradiction.

This implies immediately the following version of Lemma 1 for Duval exten-
sions, which will be used frequently further below.

Lemma 2. Let uv be a nontrivial Duval extension of u, and let α be the ⊳-
maximal suffix of u. Then uv contains just one occurrence of α.
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The next lemma highlights an interesting fact about borders involving max-
imum suffixes. It will mostly be used on maximum prefixes of words, the dual
to maximum suffixes, in later proofs. However, it is general practice to reason
about ordered factors of words by formulating facts about suffixes rather than
prefixes. Both ways are of course equivalent. We have chosen to follow general
practice here despite its use on prefixes later in this paper.

Lemma 3. Let αa be the ⊳-maximal suffix of a word wa where a is a letter.
Let u be a word such that αa is a prefix of u and wb is a suffix of u, with b 6= a
and b ⊳ a. Then u is either unbordered, or its shortest border has the length at
least |w| + 2.

Proof. Suppose that u has a shortest border hb. If |h| < |α| then hb ≤p α and
h ≤s α and hb ⊳ ha contradict the maximality of αa. Note that |h| 6= |α| since
a 6= b. If |α| < |h| ≤ |w| then αa ≤p h, and hence, αa occurs in w contradicting
the maximality of αa again; see Remark 1. Hence, |hb| ≥ |w| + 2.

The next lemma is taken from a result in [7] about so called minimal Duval
extensions. However, the shorter argument given here (including the use of
Lemma 3) gives a more concise proof than the one in [7].

Lemma 4. Let uv be a nontrivial Duval extension of u where u = xazb and
xc ≤p v and a 6= c. Then bxc occurs in u.

Proof. Let ya be the ⊳
a-maximal suffix of xa. Consider the factor yazbxc of uv,

which is longer than u and therefore bordered with a shortest border r. Now,
Lemma 3 implies that |r| > |xc|, and hence, bxc ≤s r occurs in u.

4 Some Facts about Certain Suffixes of a Word

This section is devoted to the foundational proof technique used in the remainder
of this paper. The main idea is highlighted in Lemma 5, which identifies a certain
unbordered factor of a word.

Lemma 5. Let α be the ⊳-maximal suffix and β be the ◭-maximal suffix of
a word u, and let v be such that neither α nor β occur in uv more than once.
Let a be the last letter of v and b be the first letter of x where x ≤s αv• and
|x| = π(αv•).

If π(αv) > π(αv•), then αv is unbordered, in case a ⊳ b, and βv is unbor-
dered, in case b ⊳ a.

Proof. Let γ be the longest border of αv•. Note that |γ| < |α| since •αv does
not contain the critical suffix of u, by assumption. We have α = γbα′ and
αv = v′γa. Note that π(αv•) = |v′|, and the inequality π(αv) > π(αv•) means
a 6= b.

Suppose that a ⊳ b. We claim that αv is unbordered in this case. Suppose
the contrary, and let αv have a shortest border ha. Then |h| < |γ| otherwise
either a = b, if |h| = |γ|, or γ is not the longest border of αv•, if |h| > |γ|;
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a contradiction in both cases. But now α ⊳ hbα′ since ha ≤p α and a ⊳ b
contradicting the maximality of α because hbα′ ≤s α.

Suppose that b ⊳ a. In this case the word βv is unbordered. To see this
suppose that βv has a shortest border ha. The assumption that uv contains
just one occurrence of the maximal suffixes implies that ha is a proper prefix
of β. If |h| ≥ |γ| then γa occurs in u contradicting the maximality of α since
γb ≤p α ⊳ γa. But now ha ≤p β ◭ hbα′ (since b ⊳ a) contradicting the
maximality of β.

Proposition 1. Let uv be a nontrivial Duval extension of u, and let α be
a critical suffix w.r.t. an order ⊳. Then |v| < π(αv) ≤ |u|.

Proof. If |v| ≥ π(αv) then α occurs twice in αv contradicting Lemma 2. Sup-
pose that π(αv) > |u|, and let z be the shortest prefix of v such that already
π(αz) > |u|. Then π(αz) > π(αz•), and Lemma 5 implies that either αz or βz
is unbordered, where β is the ◭-maximal suffix of u. This contradicts the as-
sumption that uv is a Duval extension, since both the candidates are longer
than u, which follows from π(αz) > |u| and |β| > |α|.

5 About Maximum Duval Extensions

In this section we consider the general results of the previous section for the
special case of Duval extensions, which leads is to the main results, Theorem 3
and 4. Theorem 3 confirms a conjecture in [6]. Theorem 4 constitutes a further
step to answer Conjecture 2.

Definition 1. Let uv be a Duval extension of u. The suffix s of uv is called a
trivial suffix if π(s) = |u| and s is of maximum length.

Note that s = uv, if uv is a trivial Duval extension, and as ≤s uv with
π(as) > |u|, if uv is a nontrivial Duval extension. Moreover, Proposition 1
implies that |s| ≥ |αv| where α is any critical suffix of u.

Let us begin with considerations about the periods of suffixes of maximum
Duval extensions.

Lemma 6. Let uv be a maximum Duval extension of u, and let ⊳ be an order
such that the ⊳-maximal suffix α is critical. Then π(αv) = |u|.

Proof. It follows from Proposition 1 that |u|−1 ≤ π(αv) ≤ |u| since |v| = |u|−2.
Suppose π(αv) = |u| − 1. Let wα be the longest suffix of u such that π(wαv) =
|u| − 1. We have wα 6= u since u is unbordered. We can write wαv = wαv′wα•,
where v′ is a prefix of v such that |wαv′| = |u| − 1. The maximality of wα
implies that awα is a suffix of u, and bwα• is a suffix of αv, with a 6= b.

Choose a letter c in wα• such that c 6= a. Such a letter exists for otherwise
awα• ∈ a+ and α is just a letter, different from a. But this implies u ∈ a+α
and v 6∈ a+ for uv to be nontrivial, that is, v′d ≤p v with d 6= a; a contradiction
since uv′d is unbordered in this case.
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Consider the ⊳
c
-maximal prefix of bwα• denoted by bt. Note that |t| ≥ 1.

We claim that awαv′t is unbordered. Suppose on the contrary that r is the
shortest border of awαv′t. By Lemma 3 applied to the reversal of awαv′t, the
border r is longer than bwα•. Hence, r contains α contradicting Lemma 2. But
now, since |wαv′| = |u| − 1 and |t| ≥ 1, the unbordered factor awαv′t is longer
than u; a contradiction.

Lemma 7. Let uv be a maximum Duval extension of u, let a be the last letter
of u, and let xv be the trivial suffix of uv. Then |α| ≤ |x| for the ⊳

a-maximal
suffix α of any order ⊳

a.

Proof. Suppose on the contrary that |α| > |x|, which implies that the ◭
a-

maximal suffix β is critical and β ≤s x by Lemma 6. Since uv is nontrivial,
we can write u = u′cwba and v = v′dw where wba = x.

Consider the maximum prefix t of dw with respect to any order on the
reversals where d is maximal. Note that d ≤s t. The word cwbav′t is longer
than u, therefore it is bordered. Let r be its shortest border. By Lemma 3,
we have |cw| < |r|. Lemma 2 implies that r = cwb, and we have d = b since
d ≤s t. Note that |t| < |bw| otherwise t = bw = wb, which implies |u| = π(xv) =
π(wbav′bw) = π(bwav′bw) ≤ |v| + 1 < |u|; a contradiction. Hence, te ≤p bw for
some letter e 6= b. Moreover, e 6= a since β• ≤s r and β does occur only once in
βv by Lemma 2.

Consider the factor αv′te, which is longer than u, and hence, bordered. Let
s be the shortest border of αv′te. Note that |s| < |β| otherwise β•e ≤s s
contradicting the maximality of β since β = β•a ◭

a β•e. Let s = β′e where
β′ ≤s β•. But then β′e ≤p α ⊳

a β′a and β′a ≤s u contradicting the maximality
of α.

Lemma 8. Let uv be a maximum Duval extension of u = u′ab where a and b
are letters. Then a occurs in u′.

Proof. Suppose on the contrary that a does not occur in u′. Note that b occurs
in u′ by Lemma 4. So, we may assume that a 6= b. Moreover, we have that
also a letter c different from a and b has to occur in u′ otherwise u = biab and
v = bjdv′ for some d 6= b and j < i, but then ubjd is unbordered; a contradiction.

Let β be the maximum suffix of u w.r.t. some order ⊳
b
c, and let α be a max-

imum suffix of u w.r.t. the order ◭
b
c. Let γ be the shorter of the two suffixes α

and β, and note that |γ| > 2.
Lemma 6 implies π(γv) = |u|. Let wγv be the trivial suffix of uv. We

have that u 6= wγ since uv is a nontrivial Duval extension of u. Therefore,
we can write u = u′dwγ and v = v′ewγ•• where d and e are different letters
and |wγv′e| = |u|. Note that e occurs in u•• otherwise uv′e is unbordered;
a contradiction. Consider an order ⊳

e and let t be the ⊳
e
-maximal prefix of

ewγ••.
The word dwγv′t is longer than u, therefore it is bordered. Let r be its

shortest border. By Lemma 3, we have |dwγ| − 2 < |r|. Lemma 2 implies that
|r| is exactly |dwγ| − 1, whence r = dwγ•. Clearly, the letter e is a suffix of t,
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and thus also of r, which implies that e is a suffix of u•; a contradiction since
e 6= a.

The following example shows that the requirement of a maximum Duval
extension is indeed necessary in Lemma 8.

Example 1. Let a, b, and c be different letters, and consider u = aibai+jbcb and
v = ai+jbai−1 with i, j ≥ 1. Then u.v = aibai+jbcb.ai+jbai−1 is a nontrivial
Duval extension of length 2|u| − 4 such that c occurs only in the second last
position of u. However, a maximum Duval extension of a word |u| has length
2|u| − 2.

The next lemma highlights a relation between the trivial suffix of a maximum
Duval extension uv and the set alph(u) of all letters occurring in u.

Lemma 9. Let uv be a maximum Duval extension of u and wxw be the trivial
suffix of uv where |wx| = |u|. Then either alph(w) = alph(u) or there exists
a letter b such that alph(w) = alph(u) \ {b} and u = u′bb and bb does not occur
in u′.

Proof. Suppose contrary to the claim that |alph(w)| < |alph(u)| and for any
b ∈ alph(u) \ alph(w) we have bb is not a suffix of u or bb occurs in u••.

Let btwac ≤s u where a, b, c ∈ alph(u) and b does not occur in tw. Consider
btwxw, which is longer than u and therefore has to be bordered. Let r be the
shortest border of btwxw. Certainly, |w| < |r| since b ≤p r and b 6∈ alph(w).
Moreover, btw ≤p r implies π(btwxw) ≤ |u| contradicting the maximality of
wxw. So, we note that |w| < |r| < |btw|.

Suppose a 6= b. Let v = v′r and consider the factor twacv′b, which has to be
bordered since |twacv′b| = |twacv| − |r| + 1 > |acv| = |u|. Let s be the shortest
border of twacv′b. We have |s| > |twa| because b is a suffix of s and does
not occur in tw and a 6= b by assumption. But now, twac ≤p s contradicting
Lemma 2 since wac contains a maximum suffix of u.

Suppose a = b. This is the only case where we need to consider that either
bb 6≤s u or bb occurs at least twice in u. Let d ∈ alph(u) be such that d = c, if
c 6= b, and d be an arbitrary letter different from b otherwise. Consider an order
⊳

b
d on alph(u). Let α be the ⊳

b
d-maximal suffix of u. Note that |α| > |wbc|

since either c = b or c = d. If c = b then bb ≤p α occurs in u• by assumption. If
c = d then be occurs in u• for some letter e by Lemma 8 where we have be ≤p α
since either d ⊳

b
d e or e = d. Since every critical suffix of u is a suffix of wbc by

Lemma 6 and α 6≤s wbc, we have that the ◭
b
d-maximal suffix β is critical and

β ≤s wbc. Moreover, |β| > 2 since bc ≤s u and d occurs in u• by Lemma 4. We
have that β•• ≤s w, and hence, β•• ≤s r. From |r| < |btw| follows that β••c′

occurs in tw where c′ is a letter in tw, and therefore c′ 6= b. But this contradicts
the maximality of β since β••b ◭

b
d β••c′.

The next two results, Lemma 10 and 11, constitute a case split of the proof
of Theorem 3. Namely, the cases when exactly two or more than two letters
occur in a maximum Duval extension.
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Lemma 10. Let uv be a maximum Duval extension of u = u′abi where i ≥ 1
and |alph(u)| > 2 and a 6= b. Then u′ does not contain the factor bi.

Proof. Suppose, contrary to the claim, that bi occurs in u′. Consider the trivial
suffix wcbv′dw of uv where |cbv′dw| = |u| and c ∈ {a, b}. We can write u =
u′ewcb with d 6= e since |u| > |wcb|. We have that alph(w) = alph(u) by
Lemma 9. Choose a letter f in dw such that f 6= e and f 6= c. Let ⊳

f
e be

an order. Let dt be the ⊳
f
e -maximal prefix of dw. The word ewcbv′t is longer

than u, therefore it is bordered. Let r be its shortest border. By Lemma 3, we
have |dw| < |r|. Lemma 2 implies that |r| is exactly |dwc|, and hence, r = ewc.
Clearly, the letter f is a suffix of t, and thus also of r, which implies that f = c;
a contradiction.

Lemma 11. Let uv be a maximum Duval extension of u = u′abi over a binary
alphabet where i ≥ 1 and a 6= b. Then u′ does not contain the factor bi and
awbb ≤s u and v = v′bw where wbbv is the trivial suffix of uv.

Proof. Let s be the trivial suffix of uv, and let u = u0cwdb and v = v′ew where
wdbv′ew = s. Note that c 6= e by the maximality of s. Let ⊳ be the order such
that a ⊳ b.

Suppose c = b and e = a. Let t be the ◭-maximal prefix of aw. Consider the
factor bwdbv′t, which is longer than |u| and hence bordered. Let r be its shortest
border. Lema 3 implies that |bw| < |r|. Lemma 2 implies that r = bwd, in fact,
r = bwa since a ≤s t. Note that |t| ≤ |w| otherwise r = bwa = baw = ba|w|+1

contradicting Lemma 9. So, we have tb ≤p aw by the maximality of t. But
now wab occurs in v, and hence, the critical suffix of u occurs in v by Lemma 6
contradicting Lemma 2.

We conclude that c = a and e = b. Consider the ⊳-maximal suffix β of u.
Suppose contrary to the claim that bi occurs in u′. Then bja ≤p β for some
j ≥ i.

Let t be the ⊳-maximal prefix of bw. Similarly to the reasoning above, we
consider the factor awdbv′t and conclude that it has the border r = awb and
d = b and ta ≤p bw. Lemma 7 implies that β ≤s wbb. Note that bj is a power
of b in u of maximum size and occurs in w by assumption, and hence, bj ≤s t.
But now, bj ≤s r and bj+1 ≤s u; a contradiction.

The main result follows directly from the previous two lemmas.

Theorem 3. Let uv be a maximum Duval extension of u = u′abi where i ≥ 1
and a 6= b. Then bi occurs only once in uv.

Indeed, bi does not occur in u′ by Lemma 10 and 11. If bi occurs in bi−1v,
that is, bi−1v = wbiv′, then u′abwbi is unbordered; a contradiction.

Let us consider the results obtained so far for the special case of a binary
alphabet in the following remark.

Remark 2. Let uv ∈ {a, b}+ be a maximum Duval extension with b ≤s u, and
let wv be the trivial suffix of uv.
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Theorem 3 implies that the ⊳
b
a-maximal suffix of u is critical and equal to bi.

Lemma 4 implies that i ≥ 2. Lemma 9 implies that a occurs in w, and in
particular, w ∈ a+bb, if i = 2. Lemma 11 implies that axbi ≤s u and bxbi−2 ≤s

v, where w = xbi.

Theorem 4. Let uv be a maximum Duval extension of u = u′abi where i ≥ 1
and a 6= b. Then 3i ≤ |u|.

Proof. The shortest possible maximum Duval extension of a word u is of the
form uv with u = abaabb and v = aaba. This proves the claim for i ≤ 2. Assume
i > 2 in the following.

Let cbk ≤s v with c 6= b. Lemma 6 implies that k ≥ i − 2, and Lemma
2 yields k ≤ i − 1. Consider the shortest border h of uv. Then |h| < |u| − 2
otherwise uv is trivial. Let h = gbk, and let j be the maximum integer such
that gbj ≤p u. Clearly, k ≤ j ≤ i − 1 since bi occurs only as a suffix of u. Let
u = gbjfbi. Note that

b 6∈ {pref1(g), pref1(f), suff1(g), suff1(f)} . (1)

Next we show that bk occurs in g or f . Suppose the contrary, that is, neither
g nor f contains bk. Consider the shortest border x of fbiv. We have |x| < |fbi|,
since bi does not occur in v. Property (1) and the assumption that bk does not
occur in f imply that x = fbk. Let v = v′fbk. Consider the shortest border
y of bjfbiv′f . Again, we have |y| < |bjfbi| since bi does not occur in v, and
property (1) implies that y = bjh. Let v = v′′bjfbk. Finally, consider the
shortest border z of uv′′bj . Property (1) and the assumption that bk does not
occur in g or f imply that either z = gbj or z = gbjfbj. The former implies
that uv = gbjfbigbjfbk is a trivial Duval extension, and the latter implies that
|u| < |v|; a contradiction in both cases.

We conclude that bk occurs in g or f . Let u = u1b
mu2b

nu3b
i where u1, u2,

and u3 are not empty and neither begin nor end with b and k ≤ m, n ≤ i − 1.
The claim is proven if |u1u2u3| > 3 or m = i − 1 or n = i − 1. Suppose the
contrary, that is, u1, u2, and u3 are letters and m = i − 2 and n = i − 2 and
k = i − 2.

Let us consider the shape of v next. Note that every factor of length 2 in
v contains b otherwise there exists a prefix w of v that ends in two letters not
equal to b and uw is unbordered; a contradiction. Moreover, for every power bk′

in v holds i − 1 ≤ k′ otherwise w′cbk′

d is a prefix of v where c and d are letters
different from b and bmu2b

nu3b
iw′cbk′

d is unbordered; a contradiction. Consid-
ering possible borders of words uv1b

i−2, uv1b
i−2v2b

i−2, u2b
i−2u3b

iv1b
i−2v2b

i−2

and u3b
iv1b

i−2v2b
i−2v3b

i−2 we deduce that v1 = u1, v2 = u2 and v3 = u3; a con-
tradiction since uv is assumed to be nontrivial. This proves the claim.

Corollary 1. Let w be a nontrivial Ehrenfeucht-Silberger extension of u such
that one of its corresponding Duval extensions is of maximum length. Then
|w| < 7

3
|u| − 2.
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Indeed, suppose on the contrary that w = xuv and uv is a maximum Duval
extension with abi ≤s u and |x| ≥ i where a 6= b. The case where xu is a
maximum Duval extension is symmetric. Now, either bi ≤s x or ebj ≤s x with
j < i and e 6= b. If ebj ≤s x with j < i and e 6= b, then ebju is unbordered;
a contradiction. If bi ≤s x then biub−i is unbordered by Theorem 3, and its
Duval extension biuv is trivial, since it is too long; a contradiction.

The following example is taken from [1].

Example 2. Consider the following word xuv where we separate the factors x,
u, and v for better readability

x.u.v = bi−2.abi−1abi−2abi.abi−2abi−1abi−2

where i > 2. We have that the largest unbordered factors of xuv are of length 3i,
namely the factors u = abi−1abi−2abi and biabi−2abi−1a, and π(xuv) = 4i − 1,
and hence, xuv is a nontrivial Ehrenfeucht-Silberger extension of u. Note that
uv is a maximum Duval extension. We have |xuv| = 7i − 4 = 7

3
|u| − 4.
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