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Abstract. The join of two varieties is the smallest variety containing both.
In finite semigroup theory, the varieties of R-trivial and L-trivial monoids are
two of the most prominent classes of finite monoids. Their join is known to be
decidable due to a result of Almeida and Azevedo. In this paper, we give a new
proof for Almeida and Azevedo’s effective characterization of the join of R-trivial
and L-trivial monoids. This characterization is a single identity of w-terms using
three variables.
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1 Introduction

Green’s relations R and L are a standard tool in the study of semigroups [5]. In the context
of finite monoids, among other results, they have been used to give effective characterizations
of language classes such as star-free languages [3}, [[T] and piecewise testable languages [6] [12].
A deterministic extension of piecewise testable languages yields the class of languages
corresponding to R-trivial monoids, and a codeterministic extension corresponds to L-trivial
monoids [4, [9].

Almeida and Azevedo gave an effective characterization for the least variety of finite
monoids containing all R-trivial and all L-trivial monoids [2], i.e., for the join of the
two varieties. Their proof is based on sophisticated algebraic techniques, on Reiterman’s
Theorem [10], and on a combinatorial result of Konig [7]. In this paper, we give a new proof
of Almeida and Azevedo’s Theorem. The current proof was inspired by another proof of
the authors [8], which in turn uses ideas of Klima [6]. The main ingredient is a system of
congruences which relies on simple combinatorics on words.
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2 Preliminaries

Let A be a finite alphabet. The set of finite words over A is denoted by A*. It is the free
monoid over A. The empty word is 1. The content of a word u = ay - -+ a, with a; € A is
a(u) ={ai1,...,a,}, and its length is |u| = n. The length of the empty word is 0. A word
u is a prefiz (respectively suffiz) of v if there exists @ € A* such that uz = v (respectively
xu =v); if  # 1, then u is a proper prefix.

For more details concerning the algebraic concepts introduced in the remainder of this
section, we refer the reader to textbooks such as [I, 4, [O]. Green’s relations R and L are
important tools in the study of finite monoids. Let M be a finite monoid. We set u R v for
u,v € M if uM = vM, and the latter condition is equivalent to the existence of z,y € M
with v = vz and v = uy. Symmetrically, u £ v if Mu = Mv. The monoid M is R-trivial
(respectively L-trivial) if R (respectively L) is the identity relation on M. We write u <g v
if uM C vM, and we write u <, v if Mu C Mv.

A wariety of finite monoids is a class of monoids closed under finite direct products,
submonoids, and quotients. A variety of finite monoids is often called a pseudovariety in
order to distinguish from varieties in Birkhoff’s sense. Since we do not need this distinction
in the current paper, whenever we use the term variety we mean a variety of finite monoids.
The join V1V Vs of two varieties V1 and V5 is the smallest variety containing Vi U Vy. A
monoid M is in V1 V V5 if and only if there exist M; € V; and Ms € V5 such that M is a
quotient of a submonoid of My x Ms. If M is a finite monoid, then there exists an integer
wps = 1 such that, for all u € M, the element u“™ is idempotent. Moreover, the element
u“™ is the unique idempotent generated by u. Usually, the monoid M is clear from the
context and thus, we simply write w instead of wy;. This leads to the following definition.
An w-term over a finite alphabet X is either a word in X*, or of the form ¢* for some
w-term ¢, or the concatenation ¢1t9 of two w-terms t1,f2. A homomorphism ¢ : X* — M to
a finite monoid M uniquely extends to w-terms over X by setting p(t¥) = ¢(t)“™. Let u,v
be two w-terms over X. A finite monoid M satisfies the identity u = v if p(u) = ¢(v) for
all homomorphisms ¢ : X* — M. The class of finite monoids satisfying the identity u = v
is denoted by [u = v]. For all w-terms u, v, the class [u = v]] forms a variety. We need the
following three varieties in this paper:

= [(zy)¥z = (zy)*]
= [z(22)* = (22)“],
=[[(xy) x(zx)” = (vy)” (22)“].

A monoid is in R if and only if it is R-trivial. Symmetrically, a monoid is in L if and only if
it is L-trivial. The aim of this paper is to give a new proof of Almeida and Azevedo’s result
R VL =W. The inclusion RV L C W is trivial since RUL C W and W is a variety.

)

3 Congruences

In this section, we introduce the main combinatorial tool for our proof. It is a family of
congruences =,, on A* for some finite alphabet A such that A*/=,, € RV L for all integers
n > 0, see Lemma [2] below. As a first step towards the definition of =,, we need to introduce
an asymmetric, weaker congruence =.



Let u,v € A*. We let u =f v if a(u) = a(v). For n > 0, we let v =X, v if the following
conditions hold:
1. a(u) = a(v),
2. for all factorizations u = ujauy and v = viave with a € A\ (a(u1) U a(v1)) we have
Uy EnR v, and us Ef v, and
3. for all factorizations u = ujaus and v = viavy with a € A\ (oz(uz) U 04(1)2)) we have
uy =R vy
By a straightforward verification we see that = is an equivalence relation. The factorization
ujaug with a € A\ a(uy) is unique. Therefore, induction on n shows that the index of =
is finite. If u =%, v, then u =% v. Moreover, if u =% v and a € A, then au =F av and

n
ua =X va. Therefore, the relation =% is a finite index congruence on A*.

Lemma 1 For every finite alphabet A and every integer n > 0 we have A* /=R € R.

Proof. Tt suffices to show (zy)" "tz =R (xy)"*! for all words x,y € A*. We note that for
y = 1 this yields 2"*2 =R g7+ The proof is by induction on n. For n = 0, the claim is
true since a(zyz) = a(zy). Let now n > 0. As before, a((zy)" ) = a((zy)"**). Suppose
(zy)" T2 = uauy and (zy)"*t = viavy for a € A\ (a(u1) Ua(vy)). Then u; = vy and
both are proper prefixes of zy. Thus us = p(zy)™z and ve = p(ay)™ for some p € A*. By
induction (zy)"x =X ;| (zy)" and hence, uy =X vs.

Suppose now (zy)" 'z = ujauy and (zy)" ! = viavs for a € A\ (a(uz) Ua(vz)). Then
avy is a suffix of zy and aus is a suffix of yx. We can therefore write v; = (zy)"p’ for some
prefix p’ of xy. Similarly, u; = (xy)*p for some k € {n,n + 1} and some prefix p of zy,
i.e., we have pg = xy for some ¢ € A*. By induction, we have (xy)"*! =R | (zy)" and
thus (zy)"T'p =R | (zy)"p. We can therefore assume k = n. Without loss of generality, let
Ip| < |p'], i-e., p’ = ps for some s € A*. Tt follows

up = (pg)"p and v = (pq)"ps.

Since p’ = ps is a prefix of zy = pq, the word s is a prefix of ¢. In particular, there exists
t € A* such that gp = st. This yields

up = p(st)” and vy = p(st)”s.

By induction, (st)® =% | (st)"s and thus u; =% | vy. This shows (zy)" Tz =% (zy)"*!

—n—1
which concludes the proof. O
There is a left-right symmetric congruence =% on A*. It can be defined by setting u = v

if and only if u? =X v?. Here, u” = a,, - - - ay is the reversal of the word u = a; - - - a,, with
a; € A. Tt satisfies A*/=% € L for every n > 0. We define u =,, v if and only if both
u =R v and v =% v. The following lemma puts together some properties of the finite index

congruence =y,.

Lemma 2 For every finite alphabet A and every integer n = 0 the following properties hold:
1. A*/=,€RVL.
2. If ujaug =p41 v1iavy fora € A\ (oz(ul) U a(vl)), then u1 =X vy and ug =, v.
3. If ujaug =p41 v1iavy fora € A\ (a(ug) U a(vg)), then uy =, v1 and ug =5 vy.

Proof. ": We have A*/=, € RV L since it is a submonoid of (4*/=F) x (A*/=%), and

A*/=R € R and A*/=F£ € L by Lemma [1| and its left-right dual. The properties “@’ and “@’
trivially follow from the definition of =,,. O



4 An Equation for the Join

The goal of this section is to prove W C RV L. By Lemma [2] it suffices to show that for
every A-generated monoid M € W there exists an integer n > 0 such that M is a quotient
of A*/=,,. The outline of the proof is as follows. First, in Lemma [3| we give a substitution
rule valid in W. Then, in Lemma [5, we show that =,-equivalence allows a factorization
satisfying the premise for applying this substitution rule; this relies on a property of W
shown in Lemma[d Finally, in Theorem [0} all the ingredients are put together.

Lemma 3 Let M € W and let u,v,x € M. If u R ux and v L xv, then uxv = uv.

Proof. Since u R ux and v L zv, there exist y,z € M with v = uzry and v = zaxv.
In particular, we have v = u(zy)* and v = (zz)“v. By M € W we conclude uzv =
u(zy)¥z(zz)v = u(zy)? (zz)v = uv. O

We will apply the previous lemma as follows. Let M € W and u,v,s,t € M such that
uR us R ut and v L sv L tv. Then usv = utv since usv = uv and utv = uwv by Lemma [3]
The R-equivalences and L-equivalences for being able to apply this substitution rule are
established in Lemma [5| Before, we give a simple property of W. It is the link between
Green’s relations and the congruence =,.

Lemma 4 Let M € W and let u,v,a € M. If u R v R va, then u R ua. If u L v L av,
then u L au.

Proof. Since u R v and u R va, there exist z,y € M with v = ux and v = vay. Now,
u = uray = u(zay)®*T! = u(zay)?z(ayr)*ay = u(zay)”(ayr)*ay = u(ayz)“ay € uaM
where the fourth equality uses M € W. This shows uM C uaM and thus v R ua. The
second implication is left-right symmetric. O

The intuitive interpretation of the algebraic statement in Lemma [4]is the following: For
M € W it only depends on the element a and the R-class of u whether « R ua or not (but
not on the element w itself). The statement for £-classes is analogous.

Lemma 5 Let M € W and let ¢ : A* — M be a homomorphism. If u =, v forn > 2|M]|,
then there exist factorizations u = a181 -+ - ap_1S¢_1a¢ and v = ayty -+ - ap_1tp_1ap with a; € A
and s;,t; € A* and with £ < 2|M| such that for alli € {1,...,£ — 1} we have:

90(0181 ce ai715i71ai) R SD(G181 ce aisi) R 90(0181 cee aiflsiflaiti)a

O(ajprtizr - ar—1te—rag) L o(tiairr - te—1as) L o(siaip1tipr - ag—1te—1ap).
Proof. To simplify notation, for some relation G on M we write u G v for words u,v € A* if
p(u) G p(v). Consider the R-factorization of u, i.e., let w = byuy - - - bpug, with b; € A such
that
biuy---b; R biuy---bu; fOI‘aHiE{l,...,k’},
biuq -+ bju; > biuq -+ biuibzqu for all i € {1, ceey k— 1}

Similarly, let v = vycy - - - v g be the L-factorization of v, i.e., we have ¢; € A and

CiUCr L vicic e UprCh forallie {1,...,k'},

ViCi+ Vit Clt > 1 Ci1ViCi * + Ukt Chiy for alli e {2,...,k'}.



We have k, k" < |M| because neither the number of R-classes nor the number of £-classes
can exceed [M|. By Lemma [4] we have b; & a(u;—1) for all i € {2,...,k} and ¢; € a(vit1)
forallie {1,..., k" — 1}. We use these properties to convert the R-factorization of u to v
and to convert the L-factorization of v to u: Let v = byv] - - - byvy, such that b; & a(v;_,),
and let u = wjcy - - - uj, cpr with ¢; € o(uj, ;). These factorizations exist because u =, v; in
particular, by Lemma [2]

— / / /
Usbip1Uipr - brup =n—; Uibi+1vi+1 te bkvk

— / ! /
V1C1 " Vj—1Cj—1V5 =n—k/—145 U1C1 - uj_lcj_luj

for all i € {1,...k} and j € {1,...,k"}. Moreover, we see a(u;) = a(v;) and a(v;) = a(u}).

We now show that the relative positions of the b;’s and c;’s in the above factorizations are
the same in u and v. Let p be the position of b; in the R-factorization of u and let ¢ be the
position of ¢; in the above factorization of w. Similarly, let p’ be the position of b; in v and

let ¢’ be the position of ¢; in v. First, suppose p < ¢. Let
u = b1u1 e bi_lui_lbi u’ cju;+1cj+1 s U;C/Ck/.

By an i-fold application of property " in Lemma |2 with a € {b1,...,b;} (which is possible
for u) we obtain v = byv] -+ bi—1v;_1b;z With 2 =, _; v'c;u)q¢jp1 -+ up e By a (K +1—7)-
fold application of property " in Lemma [2] with a € {cx,...,¢;} (which is possible for the
word u’cju;+1cj+1 -~ uj, e ) we obtain z = v'cjvj 11641 - - Uprcr. Thus

!/ / /
v = blvl ce bi_lvi_lbi UV CjUj41Cj41 U C/

showing that p’ < ¢’. Symmetrically, one shows that p’ < ¢’ implies p < q. We conclude
p < ¢ if and only if p’ < ¢’. Similarly, we have p = ¢ if and only if p’ = ¢’. It follows that
the relative order of the b;’s and ¢;’s in u and v is the same. By factoring u and v at all
bi’s and c;’s, we obtain u = a151 -+ - ar—15¢—1a¢ and v = a1ty - - - ag—1tg—10, with a; € A and
(< k+K <2|M|.

We have a181 - --A;—18;—10; R A181 """ A;—18S;—1a4;S; because u = A181 - --Ap—_1S¢—1Qy is a
refinement of the R-factorization. Note that we cannot assume a(s;) = a(t;). But each ¢; is
a factor of some v;-, and at the same time s; is a factor of u;. More precisely, there exists
m < 7 such that

bl’Ull s bj_w;»_lbj =aity--- am_ltm_lam and tmam+1 s ti_1a,¢ti is a preﬁx of U;-.
Furthermore, $,,am+1---8i—1a;8; is a prefix of u;. Now, a(t;) C a(vj) = a(u;) and, by
Lemma for all words =z with o(z) C a(u;) wehave a1s1 -+ a;—18,-10; R @151 - - - @i—18i—1a;2.

Symmetrically we see ai+1ti+1 ce ag_ltg_la[ L tiaH_l s tg_lag L siai+1ti+1 ce ag_1tg_1ag.
g

Theorem 6 (Almeida /Azevedo, 1989 [2])

RV L = [(zy)“z(zz)* = (xy)* (22)”]



Proof. The inclusion RV L C W is trivial since RUL C W and W is a variety of finite
monoids. Let M € W be generated by A, and let ¢ : A* — M be the homomorphism
induced by A C M. Let n = 2|M| and suppose u =, v. Let u = a181 -+ -ap_18¢—1a0 and
v =ajty - ap—_1tr—1ap be the factorizations from Lemma @ Applying Lemma |§| repeatedly,
we get

o(v) = plartiasts - - - ap_ots—oap_1ti—10a¢)
= p(arisiasty - - ag—ati—oap_1te—1as)
= p(a1s1a282 - - ag—ati—2as_1te—100)

= p(a151a282 - - - Qp—287—20¢—_1t—10Gy)
=

(a151a252 ce aé—25€—2a£—15£—1a€) = ga(u)

Note that the substitution rules t; — s; are @p-invariant only when applied from left to right.

This shows that M is a quotient of A*/=,,, and the latter is in RV L by Lemma Thus
M eRVL. O
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