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Abstract

The logic L(Qu) extends first-order logic by a generalized form of
counting quantifiers (“the number of elements satisfying ... belongs to
the set C”). This logic is investigated for structures with an injective
ω-automatic presentation. If first-order logic is extended by an infinity-
quantifier, the resulting theory of any such structure is known to be de-
cidable [5]. It is shown that, as in the case of automatic structures [18],
also modulo-counting quantifiers as well as infinite cardinality quantifiers
(“there are κ many elements satisfying ...”) lead to decidable theories. For
a structure of bounded degree with injective ω-automatic presentation, the
fragment of L(Qu) that contains only effective quantifiers is shown to be
decidable and an elementary algorithm for this decision is presented. Both
assumptions (ω-automaticity and bounded degree) are necessary for this
result to hold.

1 Introduction

Automatic structures were introduced in [12, 15]. The idea goes back to the
concept of automatic groups [8]. Roughly speaking, a structure is called auto-
matic if the elements of the universe can be represented as words from a regular
language and every relation of the structure can be recognized by a finite state
automaton with several heads that proceed synchronously. Automatic structures
received increasing interest during the last years [1, 4, 13, 16, 17, 19, 22]. Re-
cently, automatic structures were generalized to ω-automatic structures by the
use of Büchi-automata instead of automata on finite words [5]. One of the main
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motivations for investigating (ω-)automatic structures is the fact that every (ω-
)automatic structure has a decidable first-order theory [5, 15]. For automatic
structures, this result has been extended to first-order logic with modulo quanti-
fiers [18] and the quantifier “there exist infinitely many” (infinity quantifier) [5].
The infinity quantifier was also shown to lead to decidable theories in the realm
of ω-automatic structures [3, 5] with injective presentations.1 While there exist
automatic structures with a non-elementary first-order theory [4], the first-order
theory of any automatic structure of bounded degree is elementarily decidable;
more precisely, an upper bound of triply exponential alternating time with a
linear number of alternations was shown in [22].

The overall theme of this paper is to extend these results from automatic
structures to ω-automatic structures and to consider more involved logics. In
a first step, we extend first-order logic by modulo-counting quantifiers as in [18]
and exact counting quantifiers for infinite cardinals. We show that any injectively
ω-automatic structure has a decidable theory in this logic (Corollary 2.10). This
extends [18, Theorem 3.2] from automatic to injectively ω-automatic structures
and [5, Theorem 2.1] from first-order logic with an infinity quantifier to a further
extension of this logic. The proof is based on automata-theoretic constructions,
in particular an analysis of successful runs in Muller automata.

In a second step, we consider an even more powerful logic that we call L(Qu),
which is a finitary fragment of the logic L∞,ω(Qu)

ω from [14]. In this logic L(Qu)
one may use generalized quantifiers of the form QCy : (ψ1(y), . . . , ψn(y)), where y
is a first-order variable and C is an n-ary relation on cardinals. To determine the
truth of this formula in a model A, one first determines the cardinalities of the
sets defined by the formulas ψi(y) (1 ≤ i ≤ n). If the tuple of these cardinalities
belongs to the relation C, then the formula is true. All quantifiers mentioned so
far are special instances of these generalized quantifiers. But, e.g., also the Härtig
quantifier (“there are as many . . . as . . . ”) falls into this category.

Now let L be some fragment of L(Qu) that contains only countably many
generalized quantifiers, and let A be some injectively ω-automatic structure of
bounded degree. We prove that the L-theory of A can be decided by a Turing-
machine with oracle access to the relations C that are allowed in the fragment L.
Moreover, this Turing-machine works in triply exponential space (Theorem 3.10).
This extends [22, Theorem 3] since it applies to (1) injectively ω-automatic struc-
tures as opposed to automatic structures and (2) to first-order logic extended by
generalized quantifiers. This second main result rests on [14] where Hanf-locality
is shown for the logic L(Qu). Our algorithm therefore has to determine how often
a given neighborhood is realised (up to isomorphism) in the structure. Differ-
ently, the second author [22] used a similar locality principle to effectively bound

1The decidability proof of [5, Theorem 2.1] assumes an injective ω-automatic presentation.
[5, Proposition 5.2] states that any ω-automatic structure has such an injective presentation,
but the proof is spurious (cf. Example 2.1). So we safely use the decidability for injective
presentations, only.
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the search space of quantifiers to short words.
Another corollary of the locality principle from [14] yields that any L-definable

relation in an injectively ω-automatic structure of bounded degree is necessarily
first-order definable and therefore inherently regular (cf. [18]). But [14] does not
provide a way to effectively translate L into first-order logic. Only our decidability
result gives an effective (and even elementary) translation from L into first-order
logic for any injectively ω-automatic structure of bounded degree (Corollary 3.13).

Note that our results require a structure to be injectively ω-automatic and
of bounded degree. We finish the technical part of the paper showing that both
these assumptions are necessary, namely that our results do not hold for recur-
sive structures of bounded degree, nor for locally finite injectively ω-automatic
structures.

This paper can be understood as investigating the question which counting
quantifiers QC lead to theories that can be reduced to C. Seen in this light, we
show that this is the case (1) for semilinear sets C and arbitrary injectively ω-
automatic structures as well as (2) for arbitrary sets C and injectively ω-automatic
structures of bounded degree. It is therefore an open question whether there are
non-semilinear sets C such that the first-order theory extended by the quantifier
QC of any injectively ω-automatic structure can be reduced to C. Towards the
end of this paper, we exclude some non-semilinear sets from the list of possible
candidates, but the general question remains open.

A short version of this paper will appear as [20].

2 ω-automatic structures, infinity and modulo

quantifiers

2.1 Definitions and known results

This section introduces automata on finite and on infinite words, (ω-)automatic
structures, and logics, and recalls some basic results concerning these concepts.
For more details, see [25, 27] for automata theoretic issues, [5, 15, 18] for ω-
automatic structures, and [11] as far as logics are concerned.

Büchi-automata. Let Γ be a finite alphabet. With Γ∗ we denote the set of
all finite words over the alphabet Γ. The set of all nonempty finite words is Γ+.
An ω-word over Γ is an infinite ω-sequence w = a0a1a2 · · · with ai ∈ Γ, we set
w(i) = ai for i ∈ N and w[i, j) = aiai+1 . . . aj−1 for natural numbers i ≤ j. In the
same spirit, w[i,∞) denotes the ω-word aiai+1 . . . . The set of all ω-words over Γ
is denoted by Γω. Similarly, for a set V ⊆ Γ∗ of finite words let V ω ⊆ Γω be the
set of all ω-words of the form v1v2v3 · · · with vi ∈ V .

A (nondeterministic) Büchi-automaton M is a tuple M = (Q,Γ, δ, ι, F ),
where Q is a finite set of states, ι ∈ Q is the initial state, F ⊆ Q is the set
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of final states, and δ ⊆ Q × Γ × Q is the transition relation. If Γ = Σn for
some alphabet Σ, then we speak of an n-dimensional Büchi-automaton over Σ.
A run of M on an ω-word w = a0a1a2 · · · is an ω-word r = p0p1p2 · · · over the
set of states Q such that (pi, ai, pi+1) ∈ δ for all i ≥ 0. The run r is successful
if p0 = ι and there exists a final state from F that occurs infinitely often in r.
The language Lω(M) ⊆ Γω defined by M is the set of all ω-words for which
there exists a successful run. An ω-language L ⊆ Γω is regular if there exists a
Büchi-automaton M with Lω(M) = L.

For ω-words w1, . . . , wn ∈ Γω, the convolution w1 ⊗ w2 ⊗ · · · ⊗ wn ∈ (Γn)ω is
given by

w1 ⊗ · · · ⊗ wn = (w1(1), . . . , wn(1)) (w1(2), . . . , wn(2)) (w1(3), . . . , wn(3)) · · ·

An n-ary relation R ⊆ (Γω)n is called ω-automatic if the language {w1⊗· · ·⊗wn |
(w1, . . . , wn) ∈ R} is a regular ω-language, i.e., accepted by some n-dimensional
Büchi-automaton.

A Büchi-automaton M = (Q,Γ, δ, ι, F ) can also be considered as an ordinary
finite automaton (on finite words). Then we denote with L∗(M) ⊆ Σ∗ the set of
finite words accepted by M ; these sets of finite words are called regular.

The definition of Büchi-automata implies that every regular ω-language is a
finite union of languages of the form UV ω, where U and V are regular languages
of finite words. It is well-known that the class of all regular ω-languages is closed
under boolean operations and projections. For two Büchi-automata M1 and M2

with n1 and n2 many states, resp., there exists a Büchi-automaton with 3 ·n1 ·n2

many states accepting the language Lω(M1) ∩ Lω(M2). The proof is based on a
product construction for Büchi-automata, see e.g. [27].

ω-automatic structures. A signature is a finite set τ of relational symbols,
where each relational symbol R ∈ τ has an associated arity nR. A (relational)
structure over the signature τ or τ -structure is a tuple A = (A, (RA)R∈τ ), where A
is a set (the universe of A) and RA is a relation of arity nR over the set A, which
interprets the relational symbol R. We will assume that every signature contains
the equality symbol = and that =A is the identity relation on the set A. Usually,
we denote the relation RA also with R. We will also write a ∈ A for a ∈ A. For
a subset B ⊆ A we denote with A¹B the restriction (B, (RA ∩BnR)R∈τ ).

Let A be an arbitrary τ -structure with universe A. An ω-automatic presen-
tation for A is a tuple (Γ, L, h) such that

• Γ is a finite alphabet,

• L ⊆ Γω is a regular ω-language,

• h : L→ A is a surjection, and
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• the relations

{(u, v) ∈ L2 | h(u) = h(v)}

and {(u1, . . . , unR
) ∈ LnR | (h(u1), . . . , h(unR

)) ∈ R}

are ω-automatic for every R ∈ τ .

An ω-automatic presentation is injective if the function h is injective (i.e., a
bijection). We say that A is (injectively) ω-automatic if there exists an (injective)
ω-automatic presentation for A. Automatic structures are defined in the same
way as ω-automatic structures, except that finite automata over finite words
instead of Büchi-automata are used (the convolution of finite words requires an
additional letter ⊥ that is appended to the arguments in order to make them the
same length). By [3, Theorem 5.32], a countable structure is automatic if and
only if it is injectively ω-automatic. Furthermore, any automatic structure has
an injective automatic presentation.

Example 2.1. Let two sets A and B of natural numbers be equivalent (A ≈ B)
iff the symmteric difference A4B is finite. Then ≈ is a congruence wrt. union,
intersection, and complementation of subsets of N. Hence the quotient B of the
powerset of N wrt. ≈ is a Boolean algebra. It has an ω-automatic presentation:
Let Γ = {0, 1}, L = Γω, and h(w) = [{i ∈ N | w(i) = 1}]≈. Then h(u) = h(w)
iff u and w are eventually equal which can be tested by a Büchi-automaton with
only two states. Similarly, h(u) ≤ h(v) in the Boolean algebra B iff u(i) ≤ v(i)
for almost all i.

Any infinite ω-regular set K contains two ω-words that are eventually equal.
Hence there is no ω-regular subset K ⊆ L such that, for any u ∈ L, there is
precisely one v ∈ K with h(u) = h(v). The ω-automatic presentation (Γ, L, h) of
the Boolean algebra B can therefore not be restricted to an injective one (Γ, K, h).
This shows that the proof of [5, Proposition 5.2] does not work. It is therefore
open as to whether every ω-automatic structure has an injective ω-automatic
presentation.

Logic. In addition to the usual first-order quantifier ∃, this section is concerned
with quantifiers ∃∞, ∃κ for a cardinal κ, and ∃(t,k) for 0 ≤ t < k > 1 two natural
numbers. The semantics of these quantifiers are defined as follows:

• A |= ∃∞xψ if and only if there are infinitely many a ∈ A with A |= ψ(a).

• A |= ∃κxψ if and only if the set {a ∈ A | A |= ψ(a)} has cardinality κ.

• A |= ∃(t,k)xψ if and only if the set {a ∈ A | A |= ψ(a)} is finite and
t = |{a ∈ A | A |= ψ(a)}| mod k.
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We will denote by FO the set of first-order formulas. For a class of cardinals C,
we denote by FO(∃∞, (∃κ)

κ∈C , (∃
(t,k))0≤t<k>1) the set of formulas using ∃ and the

quantifiers listed. For any of these sets L of formulas, the L-theory of a structure
A is the set of sentences (i.e., formulas without free variables) that hold in A.

The following result can be shown by induction on the structure of the for-
mula ϕ.

Proposition 2.2 (cf. [5, 15, 18]). Let (Γ, L, h) be an automatic presentation
for the structure A and let ϕ(x1, . . . , xn) be a formula of FO(∃∞, (∃(t,k))0≤t<k≥2)
over the signature of A. Then the relation

{(u1, . . . , un) ∈ Ln | A |= ϕ(h(u1), . . . , h(un))}

is effectively automatic. It is effectively ω-automatic if (Γ, L, h) is an injective
ω-automatic presentation for the structure A and ϕ belongs to FO(∃∞).

This proposition implies the following result, which is one of the main motivations
for investigating automatic structures.

Theorem 2.3 ([5, 18]). If A is an injectively ω-automatic structure, then the
FO(∃∞)-theory of A is decidable. If A is an automatic structure, then even the
FO(∃∞, (∃(t,q))0≤t<q≥2)-theory of A is decidable.

Note that any automatic structure A is at most countably infinite. Hence the
quantifiers ∃∞ and ∃ℵ0 are equivalent in this setting. Furthermore, no formula
∃κxψ with κ > ℵ0 holds in A. Hence, for any countable set of cardinals C, the
FO(∃∞, (∃κ)

κ∈C , (∃
(t,k))0≤t<k>1)-theory of an automatic structure is decidable.2

In the rest of Section 2 we extend this result to injectively ω-automatic structures.
To the knowledge of the authors, the modulo quantifiers ∃(t,k) have not yet

been considered for ω-automatic structures. Concerning the counting quanti-
fiers ∃κ, the situation is more involved than in the setting of automatic structures
since an ω-automatic structure can have up to 2ℵ0 many elements. Thus, it makes
sense to consider quantifiers of the form ∃κ with ℵ0 ≤ κ ≤ 2ℵ0 .

2.2 Cardinality quantifier ∃κ for ω-automatic structures

Two infinite words v and w are ultimately equal, briefly v ∼ w, if there exists
i ∈ N with v[i,∞) = w[i,∞). The following lemma is our main combinatorial
tool for analyzing ω-automatic structures.

Lemma 2.4. Let M be a Büchi-automaton with n states over Σ × Γ, u ∈ Σω,
and V = {v ∈ Γω | u⊗ v ∈ Lω(M)}. Then:

2C has to be countable for otherwise the set of formulas would become uncountable rendering
the decidability question nonsense.
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• |V | = 2ℵ0 if and only if |V/∼| > n and

• |V | ∈ N ∪ {ℵ0, 2
ℵ0}.

Proof. Since equivalence classes wrt. ∼ are at most countably infinite, the im-
plication “⇒” of the first statement is obvious. So assume |V/∼| > n. Then
there are mutually non-equivalent words v1, v2, . . . , vn+1 ∈ V . For 1 ≤ i ≤ n+ 1,
let ri be a successful run of M on the word u ⊗ vi. For 1 ≤ i < j ≤ n + 1, set
xij = sup{k ∈ N | ri(k) = rj(k)} and let x = max{xij | 1 ≤ i < j ≤ n + 1}. If
x ∈ N, then the states ri(x+ 1) for 1 ≤ i ≤ n+ 1 are mutually distinct which is
impossible since there are only n states. Hence, there are 1 ≤ i < j ≤ n+ 1 with
xij = ω, w.l.o.g. we assume i = 1 and j = 2. Since v1 6∼ v2, since x12 = ω, and
since r1 and r2 are successful, there exist 0 = i0 < i1 < i2 . . . such that for any
j ∈ N

• v1[ij, ij+1) 6= v2[ij, ij+1) and r1(ij) = r2(ij)

• there exist k, ` with ij ≤ k, ` < ij+1 and r1(k), r2(`) ∈ F .

Hence, the Büchi-automaton M accepts any ω-word of the form u⊗ (y0y1y2 · · · ),
where yj ∈ {v1[ij, ij+1), v2[ij, ij+1)} for all j ∈ N. This gives 2ℵ0 many distinct
elements of V , i.e., we showed |V | = 2ℵ0 .

If |V | > ℵ0, then V/∼ contains infinitely many equivalence classes since any
of them is at most countable. Thus, |V | = 2ℵ0 follows, which gives us the second
statement from the lemma.

Setting u = aω ∈ Σω, an ω-regular language L ⊆ Γω can be considered as the
set V in the lemma above. Thus, any uncountable ω-regular language L contains
2ℵ0 many words, a result that can also be found in [21, Lemma 5.41].

Proposition 2.5. Let the relation R ⊆ (Γω)n+1 be ω-automatic (thus, (Γω, R) is
an injectively ω-automatic structure) and let κ be some cardinal. Then

R
κ

= {(u1, . . . , un) | (Γω, R) |= ∃κxn+1 : R(u1, . . . , un, xn+1)}

is effectively ω-automatic.

Proof. By Lemma 2.4, R
κ

= ∅ for κ 6∈ N∪ {ℵ0, 2
ℵ0}. If κ is finite, we can define

the relation R
κ

in first-order logic from R; hence the result follows from Propo-
sition 2.2. To deal with the two remaining cases, recall that the relation ∼ (ul-
timate equality), defined at the beginning of this section, is ω-automatic. Hence
A = (Γω,∼, R) is an injectively ω-automatic structure. Let m be the number of
states of some (n + 1)-dimensional Büchi-automaton M accepting R. Thus we
have to construct a Büchi-automaton accepting

{u1 ⊗ . . .⊗ un | A |= Qxn+1 : R(u1, . . . , un, xn+1)}
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where Q ∈ {∃ℵ0 ,∃2ℵ0}.
Let u1, . . . , un ∈ Γω and consider u = u1 ⊗ u2 · · · ⊗ un ∈ Σω with Σ = Γn. Let

V = {v ∈ Γω | A |= R(u1, . . . , un, v)} = {v ∈ Γω | u ⊗ v ∈ Lω(M)}. Hence, by
Lemma 2.4, we have A |= ∃2ℵ0xn+1 : R(u1, . . . , un, xn+1) (i.e., |V | = 2ℵ0) if and
only if

A |= ∃x0 · · · ∃xm

(

∧

0≤i<j≤m

xi 6∼ xj ∧
∧

0≤i≤m

R(u1, . . . , un, xi)

)

.

Lemma 2.4 also ensures that A |= ∃ℵ0xn+1 : R(u1, . . . , un, xn+1) if and only if

A |= ∃∞xn+1 : R(u1, . . . , un, xn+1) ∧ ¬∃2ℵ0xn+1 : R(u1, . . . , un, xn+1).

Now Proposition 2.2 allows to construct the Büchi-automata accepting the con-
volution of R

κ
.

2.3 Modulo quantifier ∃(t,k) for ω-automatic structures

We now want to prove a result similar to Proposition 2.5 for modulo quantifiers.
Therefore, let R ⊆ (Γω)n+1 be ω-automatic and let 0 ≤ t < k ≥ 2. It is our aim
to show the ω-automaticity of the relation S of all those tuples (u1, . . . , un) ∈
(Γω)n such that {v ∈ Γω | (u1, . . . , un, v) ∈ R} is finite and contains, modulo k,
precisely t elements. For the following, it is convenient to write Σ = Γn and
consider R as an ω-automatic subset of Σω × Γω.

For the further considerations, we will need the concept of a deterministic
Muller-automaton: it is a tuple M = (Q,Γ, δ, ι,F), where Q is a finite set of
states, ι ∈ Q is the initial state, F ⊆ 2Q is a table of accepting states, and
δ : Q×Σ → Q is the transition function. A run ofM on an ω-word w = a0a1a2 · · ·
is an ω-word r = p0p1p2 · · · over the set of states Q such that pi+1 = δ(pi, ai)
for all i ≥ 0. Let inf(r) denote the set of states appearing infinitely often in the
run r. Then r is successful if p0 = ι and inf(r) ∈ F . The language Lω(M) ⊆ Γω

defined by M is the set of all ω-words for which there exists a successful run. By
McNaughton’s theorem, any Büchi-automaton M can effectively be transformed
into a Muller automaton M ′ with Lω(M) = Lω(M ′) and vice versa, see e.g. [25].

Since the convolution of R is ω-regular, it can be accepted by some deter-
ministic Muller-automaton M = (Q,Σ × Γ, δ, ι,F). Now consider the alphabet
∆ = Σ × Γ × {0, . . . , k − 1}Q × {0, 1}Q and let π : ∆ → Σ × Γ be the canonical
projection morphism.

Lemma 2.6. One can construct a Büchi-automaton M ′ over the alphabet ∆ that
accepts an ω-word (ai, bi, fi, gi)i≥0 if and only if we have for all i ≥ 0 and all
p ∈ Q

(1) fi(p) = |{w ∈ Γ∗ | |w| = i, δ(ι, a0a1 . . . ai−1 ⊗ w) = p}| mod k and
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(2) gi(p) = 1 if and only if the ω-word aiai+1 · · ·⊗ bibi+1 · · · has an accepting run
in M from the state p.

Note that fi(p) is the number of possible partners (modulo k) that allow
a0 . . . ai−1 to move from the initial state of M into p. Furthermore, gi(p) tells
whether the remaining word (obtained by discarding the information fi and gi)
is accepted by M .

Proof. Since M is deterministic, (1) above holds if and only if the following two
local conditions hold:

• f0(ι) = 1 and f0(p) = 0 for p 6= ι

• for any i ∈ N and q ∈ Q, we have

fi+1(q) =







∑

p∈Q,b∈Γ,
δ(p,(ai,b))=q

fi(p)






mod k.

Thus, one can construct a Büchi-automaton over ∆ that precisely accepts all
sequences satisfying (1).

Let Mp (p ∈ Q) be the Muller automaton that results from M by making p
the unique initial state. Then w ∈ ∆ω violates (2) if and only if there is a state
p ∈ Q and a suffix of w that belongs to

[

π−1(Lω(Mp)) ∩ {(a, b, f, g) ∈ ∆ | g(p) = 0}∆ω
]

∪
[

∆ω \ π−1(Lω(Mp)) ∩ {(a, b, f, g) ∈ ∆ | g(p) = 1}∆ω
]

.

Thus, we can also construct a Büchi-automaton over ∆ that accepts a sequence
if and only if it satisfies (2).

Note that for any u ∈ Σω and v ∈ Γω, there is precisely one ω-word x ∈ L(M ′)
with π(x) = u⊗ v.

Lemma 2.7. Let u ∈ Σω and v ∈ Γω and let x = (a1, b1, f1, g1)(a2, b2, f2, g2) · · · ∈
L(M ′) be the unique ω-word with π(x) = u⊗ v. If {w ∈ Γω | w ∼ v, (u,w) ∈ R}
is finite, then there exists i ∈ N such that for all j ≥ i, we have

∑

p∈Q,
gj(p)=1

fj(p) ≡ |{w ∈ Γω | w ∼ v, (u,w) ∈ R}| mod k. (1)

Proof. Let H = {w ∈ Γω | w ∼ v, (u,w) ∈ R}. Since H is a finite set of words
that are ultimately equal to v, there exists i ∈ N such that, for all w ∈ H, we
have w[i,∞) = v[i,∞). Now let j ≥ i. We show that

H = {wv[j,∞) | |w| = j, δ(ι, u[0, j) ⊗ w) = p with gj(p) = 1},
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which immediately implies (1).
First, let x ∈ H. Since j ≥ i, we get x[j,∞) = v[j,∞), i.e., there exists a

word w ∈ Σ∗ with |w| = j and x = wv[j,∞). Let p = δ(ι, u[0, j) ⊗ w). Since
x ∈ H, we get u⊗ x ∈ Lω(M) and therefore u[j,∞) ⊗ x[j,∞) ∈ Lω(Mp). Since
x[j,∞) = v[j,∞), this implies gj(p) = 1. Thus, x is in the set above.

Conversely, let w ∈ Σ∗ with |w| = j, p = δ(ι, u[0, j) ⊗ w), and gj(p) = 1. Set
x = wv[j,∞) ensuring x ∼ v. Furthermore, gj(p) = 1 implies u[j,∞)⊗ v[j,∞) ∈
Lω(Mp) and therefore u⊗ x ∈ Lω(M). Hence x ∈ H.

Proposition 2.8. Let the relation R ⊆ (Γω)n+1 be ω-automatic (thus, (Γω, R) is
an injectively ω-automatic structure) and let 0 ≤ t < k ≥ 2. Then

S = {(u1, . . . , un) | (Γω, R) |= ∃(t,k)xn+1 : R(u1, . . . , un, xn+1)}

is effectively ω-automatic.

Proof. Let R′ ⊆ R comprise all those tuples (u1, . . . , un, v) ∈ R such that there
are only finitely many w ∈ Γω with (u1, . . . , un, w) ∈ R. Then, by Proposi-
tion 2.2, the relation R′ is effectively ω-automatic, i.e., (Γω, R′) is an injectively
ω-automatic structure. Moreover, (Γω, R) |= ∃(t,k)xn+1 : R(u1, . . . , un, xn+1) if
and only if (Γω, R′) |= ∃(t,k)xn+1 : R′(u1, . . . , un, xn+1), i.e., replacing R by R′ in
the definition of S does not change the set S. Thus, we can assume R = R′.
This has the advantage that the finiteness assumption in Lemma 2.7 is trivially
satisfied in the further discussion.

For 0 ≤ s < k let Rs ⊆ R comprise all n+ 1-tuple (u1, u2, . . . , un, v) ∈ R such
that, modulo k, there are s words w ultimately equal to v with (u1, u2, . . . , un, w) ∈
R. To show that Rs is ω-automatic, let ∆s ⊆ ∆ comprise all tuples (a, b, f, g) that
satisfy s =

∑

{f(p) | p ∈ Q, g(p) = 1} mod k. Then the set Lω(M ′) ∩ ∆∗∆ω
s is

ω-regular (where M ′ is the Büchi-automaton from Lemma 2.6). Hence the same
holds for the projection P of this language to (Σ × Γ)ω. Then, by Lemma 2.7,
u1 ⊗ u2 . . . un ⊗ v ∈ P if and only if, modulo k, there are s words w ultimately
equal to v such that (u1, . . . , un, w) ∈ R, i.e., (u1, . . . , un, v) ∈ Rs. Hence Rs is
ω-automatic.

Since R is ω-automatic, there is a Büchi-automaton with, say, m states ac-
cepting the convolution of R. Let ū ∈ (Γω)n. Since, by our assumption on R, the
set {v ∈ Γω | (u, v) ∈ R} is finite, there are r (for some r ≤ m) many ω-words
v1, . . . , vr in this set that are mutually not ultimately equal (Lemma 2.4). Thus,
we have (Γω, R) |= ∃(t,k)xn+1 : R(u1, . . . , un, xn+1) if and only if there exist r ≤ m,
mutually not ultimately equivalent words v1, . . . , vr ∈ Γω and integers 0 ≤ ti < k
for 1 ≤ i ≤ r such that

1. R(u1, . . . , un, vi) for 1 ≤ i ≤ r,

2. for any v ∈ Γω with R(u1, . . . , un, v), there exists 1 ≤ i ≤ r with v ∼ vi,
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3. t =
∑r

i=1 ti mod k and (u1, u2 . . . un, vi) ∈ Rti for 1 ≤ i ≤ r.

Since m is a constant depending on R, only, these conditions can be expressed in
FO over the injectively ω-automatic structure (Γω,∼, R,R0, R1, . . . , Rk−1). Hence
Proposition 2.2 implies that S is effectively ω-regular.

Together with Propositions 2.2 and 2.5, we obtain:

Theorem 2.9. Let (Γ, L, h) be an injective ω-automatic presentation for the
structure A, let C be an at most countably infinite set of cardinals, and let
ϕ(x1, . . . , xn) be a formula of FO(∃∞, (∃κ)

κ∈C , (∃
(t,k))0≤t<k≥2) over the signature

of A. Then the relation

R = {(u1, . . . , un) ∈ Ln | A |= ϕ(h(u1), . . . , h(un))}

is effectively ω-automatic.

Proof. The proof is by induction on the construction of a formula. If ϕ is an
atomic formula, the relation R is ω-automatic since A is ω-automatic. If ϕ =
ψ1 ∧ ψ2, ϕ = ¬ψ, or ϕ = ∃xψ, the result holds since ω-regular languages are
effectively closed under Boolean operations and projections. Finally, if ϕ = Qxψ
for some quantifier Q, then we invoke [3] for Q = ∃∞, Proposition 2.5 for Q = ∃κ,
and Proposition 2.8 for Q = ∃(t,k).

Corollary 2.10. Let A be an injectively ω-automatic structure and let C be an at
most countably infinite set of cardinals. Then the FO(∃∞, (∃κ)

κ∈C , (∃
(t,k))0≤t<k>1)-

theory of A is decidable.

Proof. This follows immediately from Theorem 2.9 since the emptiness of Lω(M)
is decidable for a Büchi-automaton M .

3 ω-automatic structures of bounded degree and

complexity of theories

Consider the structure ({0, 1}∗, s0, s1,¹), where si(w) = wi for w ∈ {0, 1}∗ and
i ∈ {0, 1}, and ¹ is the prefix order on finite words. It is easily seen to be
automatic, hence its first-order theory is decidable. But the time complexity
of this theory is non-elementary, i.e., cannot be bounded by a fixed tower of
exponents, see e.g. [7, Example 8.3]. Thus, as first observed in [4], there are
automatic structures with a non-elementary first-order theory.

Our aim in this section is to single out a class of ω-automatic structures
such that the FO(∃∞,∃ℵ0 ,∃2ℵ0 , (∃(t,k))0≤t<k>1)-theory is elementarily decidable.
In doing so, we will find that even more general quantifiers give rise to elementar-
ily decidable theories provided we constrain ourselves to structures of bounded
degree.
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3.1 Definitions and known results

Structures of bounded degree. Let τ be a relational signature and let A be
a τ -structure with universe A. The Gaifman-graph GA of the structure A is the
following undirected graph:

GA = (A, {(a, b) ∈ A× A | ∃R ∈ τ ∃(c1, . . . , cnR
) ∈ R ∃j, k : cj = a 6= b = ck}).

Thus, the set of nodes is the universe of A and there is an edge between two
elements, if and only if they are contained in some tuple belonging to one of the
relations of A. The structure A is locally finite, if every node of the Gaifman-
graph GA has only finitely many neighbors. It has bounded degree, if its Gaifman-
graph GA has bounded degree, i.e., there exists a constant d such that every a ∈ A
is adjacent to at most d other nodes in GA.

In contrast to the structure ({0, 1}∗, s0, s1,¹), if the degree of an automatic
structure A is bounded, an elementary upper bound for the first-order theory
of A is due to the second author (ATIME(f(n), g(n)) is the class of problems
that can be solved by an alternating Turing machine in time g(n) with at most
f(n) many alternations on an input of size n):

Theorem 3.1 ([22]). The following holds:

1. If A is an automatic structure of bounded degree, then the FO-theory of A
can be decided in ATIME(O(n), exp(3, O(n))).

2. There exists an automatic structure A of bounded degree such that for some
constant c, ATIME(c · n, exp(2, c · n)) is a hereditary lower bound (see [7]
for the definition) for the FO-theory of A.

This result was not known to apply to more general quantifiers nor to ω-
automatic structures. An important tool in the proof of Theorem 3.1 as well as
in our extension, is the concept of a sphere that we introduce next.

With dA(a, b), where a, b ∈ A, we denote the distance between a and b in GA,
i.e., it is the length of a shortest path connecting a and b in GA. For a ∈ A and
r ≥ 0 we denote with SA(r, a) = {b ∈ A | dA(a, b) ≤ r} the r-sphere around a. If
ā = (a1, . . . , an) ∈ An is a tuple, then SA(r, ā) =

⋃n

i=1 SA(r, ai). The neighborhood
NA(r, ā) = A¹SA(r, ā) of radius r around ā is the substructure of A induced by
SA(r, ā).

Generalized quantifiers and locality. Let us fix a relational signature τ .
In this section, we will consider the logic L(Qu). Formulas of the logic L(Qu)
are built from atomic formulas of the form R(x1, . . . , xnR

), where R ∈ τ is a
relational symbol and x1, . . . , xnR

are first-order variables ranging over the uni-
verse of the underlying structure, using boolean connectives and quantifications
of the form QCy : (ψ1(x̄, y), . . . , ψn(x̄, y)). Here, ψi(x̄, y) is already a formula of
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L(Qu), x̄ is a sequence of variables, and C is an n-ary relation over cardinals, i.e.,
C = {(κi,1, . . . ,κi,n) | i ∈ J,κi,j is a cardinal} for some index set J . The seman-
tics of the QC-quantifier is defined as follows: Let A be a τ -structure with uni-
verse A and let ū be a tuple of values from A of the same length as x̄. Then A |=
QCy : (ψ1(ū, y), . . . , ψn(ū, y)) if and only if (c1, . . . , cn) ∈ C, where ci is the cardi-
nality of the set {a ∈ A | A |= ψi(ū, a)}. In the above situation, we call the quan-
tifier QC also an n-dimensional counting quantifier. The quantifier rank qfr(ϕ) of
a formula ϕ is inductively defined as follows: Every atomic formula has quantifier
rank 0, and qfr(¬ϕ) = qfr(ϕ), qfr(ϕ ∧ ψ) = qfr(ϕ ∨ ψ) = max{qfr(ϕ), qfr(ψ)},
and qfr(QCy : (ψ1(x̄, y), . . . , ψn(x̄, y))) = 1 + max{qfr(ψi(x̄, y) | 1 ≤ i ≤ n}. The
logic L(Qu) is a finitary fragment of the logic L∞,ω(Qu)

ω from [14], which allows
infinite conjunctions and disjunctions but restricts to finite quantifier rank.

In [14], counting quantifiers where introduced slightly differently using classes
of structures with only unary predicates: Let K be a class of structures, where
every structure in K consists of exactly n unary predicates. Then, in [14] the
formula QKy : (ψ1(ū, y), . . . , ψn(ū, y)) expresses that the structure (A, ({a ∈ A |
A |= ψi(ū, a)})1≤i≤n) is isomorphic to a structure in K. It is easy to see that the
resulting logic is equivalent with respect to expressive power to our variant.

Let us consider some examples for generalized quantifiers. The ordinary ex-
istential quantifier ∃y : ϕ(x̄, y) is equivalent to QC y : ϕ(x̄, y), where C is the
class of all non-zero cardinals. Similarly, we can obtain the counting quanti-
fier CK y : ϕ(x̄, y) for K some class of cardinals (“the number of y satisfying
ϕ(x̄, y) belongs to K”). Well-known special cases of the latter quantifier are the
quantifiers ∃∞, ∃κ and ∃(t,q) from the previous section. All these counting quan-
tifiers are one-dimensional. A well-known two-dimensional counting quantifier is
the Härtig quantifier I y : (ψ1(x̄, y), ψ2(x̄, y)) [10] (“the number of y satisfying
ψ1(x̄, y) equals the number of y satisfying ψ2(x̄, y)”). For this we have to choose
for C the identity relation on cardinals.

For a class C, where every C ∈ C is a relation on cardinals, L(C) denotes
those formulas of L(Qu) that only use quantifiers of the form QC with C ∈ C.
Furthermore, FO(C) denotes the logic L({∃}∪C), i.e., the extension of first-order
logic by quantifiers QC for C ∈ C. For a singleton class C = {C} we also write
FO(C) instead of FO(C). For a logic L and a structure A, the L-theory of A
denotes the set of all sentences from L that hold in A.

We will make use of the following locality principle for the logic L(Qu):

Theorem 3.2 ([14]). Let A be a locally finite structure, let ϕ(x1, . . . , xk) be an
L(Qu)-formula of quantifier rank at most d, and let ā, b̄ ∈ Ak be k-tuples with
(NA(2d, ā), ā) ∼= (NA(2d, b̄), b̄).3 Then A |= ϕ(ā) if and only if A |= ϕ(b̄).

Proof. Keisler and Lotfallah proved in [14] the statement of the theorem for
locally finite countable structures and the infinitary extension L∞,ω(Qu)

ω of

3Thus, there exists an isomorphism f : NA(2d, ā) → NA(2d, b̄) mapping for every 1 ≤ i ≤ k

the i-th entry of ā to the i-th entry of b̄.
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L(Qu), see Option 2 in [14]. As an intermediate step, they considered the
fragment of L∞,ω(Qu)

ω where only counting quantifiers of the form CA with
A = {0, 1, 2, . . . , n} for some n ∈ N are allowed. Considering, instead, the frag-
ment where counting quantifiers CA with A = {λ | λ ≤ κ} for κ a cardinal
are allowed, one obtains the above general theorem (which does not restrict to
countable structures) without any further modifications of [14].

An auxiliary result on regular ω-languages. Recall that, by Lemma 2.4,
the cardinality of a regular ω-language L belongs to N∪{ℵ0, 2

ℵ0}. Thus, it makes
sense to ask whether this cardinality can be computed effectively from a given
Büchi-automaton M for L. The decidability of this question was shown in [21,
Satz 5.48]. Here, we give a bound on the complexity, which will be needed in
Section 3.2 in order to derive our upper complexity bounds for L(C)-theories.

Lemma 3.3. From a given Büchi-automaton M we can compute in polynomial
space the cardinality |Lω(M)| of the ω-language accepted by M .

Proof. Let F be the set of final states of M , Σ its alphabet, and n the number
of its states. We may assume that all states of M are reachable from the initial
state and that for every final state p ∈ F there exists a nonempty path from p
to p. Suppose there is a final state p ∈ F and two distinct words v and w of
equal length that label paths from p back to p. Let u be the label of some path
from the initial state to p. Then u{v, w}ω contains 2ℵ0 many elements. Hence,
this is the size of Lω(M). Using a simple pigeonhole argument, the length of v
and w can be bounded by n2. Thus, a nondeterministic machine can check in
polynomial space the existence of p, v, and w as required.

Now suppose that for any final state p and any m ∈ N, there is at most
one word w of length m that labels a path from p to p. For p ∈ P , let up be
the unique shortest word labeling a loop at p. Then |up| ≤ n. Furthermore,
let vp be the unique primitive word4 such that up ∈ v∗p. Clearly, also the length
of vp is bounded by n. Then Lω(M) =

⋃

p∈F L∗(Mp)v
ω
p where the only difference

of M and Mp is that p is the only accepting state of Mp. Choose the unique
factorization vp = xpyp such that ypxp is the lexicographically minimal word
(w.r.t. some fixed order on the alphabet Σ) in the language {yx | vp = xy}.
Then L∗(Mp)v

ω
p = L∗(Mp)xp(ypxp)

ω. Let wp = ypxp and Lp = L∗(Mp)xp. Thus,
L∗(Mp)v

ω
p = Lpw

ω
p and wp is the lexicographically minimal cyclic rotation of vp

(and hence of itself). Since any cyclic rotation of a primitive word remains
primitive, wp is still primitive [23].

We claim that Lpw
ω
p ∩ Lqw

ω
q = ∅ whenever wp 6= wq. To show this by con-

traposition, let swω
p = twω

q for some s ∈ Lp and t ∈ Lq. W.l.o.g. |s| ≥ |t|. Thus,
there exists m ≥ 0 and a factorization wq = xy such that s = twm

q x. Hence,
wω

p = ywω
q = (yx)ω. Since wp and yx are both primitive, we obtain wp = yx.

4i.e., vp 6= ε is no power of any word different from itself.
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Now since both wp and wq = xy are their lexicographically minimal cyclic rota-
tions, we get wp = wq, a contradiction.

For two accepting states p and q with wp = wq, we write p ≈ q. Thus, by the
previous paragraph, Lω(M) is the disjoint union of the sets

⋃

p∈X Lpw
ω
p , where X

is an equivalence class of ≈. Therefore it suffices to calculate the cardinality of
every set

⋃

p∈X Lpw
ω
p , where X is an equivalence class of ≈. Let us fix such an

equivalence class X. Let w = wp = ypxp (for an arbitrary p ∈ X). By adding a
thread labeled with the word xp to every state p ∈ X of the automaton M , we
can easily construct a finite automaton for the language K =

⋃

p∈X Lp ⊆ Σ∗ with
O(n2) states (recall that Lp = L∗(Mp)xp). We have to calculate the cardinality
of the set Kwω. Define

H = {x ∈ Σ∗ | xw∗ ∩K 6= ∅, x /∈ Σ∗w} .

Then Hwω = Kwω: if u ∈ H, then there exists m ≥ 0 with uwm ∈ K implying
uwω ∈ Kwω. Conversely, let u ∈ K. Then let m ∈ N be maximal such that wm

is a suffix of u and write u = twm. Then t ∈ H implying uwω ∈ Hwω.
In addition, |H| = |Kwω|: Consider the function f : H → Σω : u 7→ uwω. It

mapsH surjectively ontoKwω by the above. To show injectivity, let s, t ∈ H with
swω = twω. Then there is m ∈ N and a proper prefix x of w such that w.l.o.g.
s = twmx. Let w = xy. Since sw and twm+1x are both prefixes of the ω-word
swω = twω and have the same length, we obtain sxy = sw = twm+1x = twmxyx.
Hence xy = w = yx. If both, x and y are nonempty, then they have a common
root [23, Proposition 1.3.2]. But this contradicts the primitivity of w. Since x is
a proper prefix of w, it must therefore be empty, i.e., s = twm ∈ H. Since w is no
suffix of any word in H, we obtain m = 0 and therefore s = t. Thus, indeed, f is
bijective.

Thus, we have to calculate the cardinality of the set H. By calculating all
states in a finite state automaton for K from which a final state can be reached
by a w∗-labeled path, we can easily construct a finite state automaton A for
the language {x ∈ Σ∗ | xw∗ ∩ K 6= ∅}. Then H is the set L∗(A) \ Σ∗w. We
will calculate the cardinality of the set H rev = L∗(A)rev \ wrevΣ∗. Note that a
deterministic and complete automaton for wrevΣ∗ has |wrev| + 2 ≤ n + 2-many
states. Thus, by the product construction we can compute a nondeterministic
finite automaton A′ for Hrev with O(n3) states. The infinity of the language
L∗(A

′) can be checked in nondeterministic logarithmic space by searching for a
reachable loop in A′. Thus, within the given space bound, we can check infinity
of H. On the other hand, if L∗(A

′) is finite, then every word in L∗(A
′) is of length

O(n3). In order to calculate the size of L∗(A
′) we test all words of length O(n3)

in lexicographic order. This can be done in polynomial space.

Remark 3.4. In the above proof, we reduce the calculation of the cardinality of
Lω(M) in polynomial time to the calculation of the size of the language accepted
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by an acyclic finite automaton. The latter problem is easily seen to be #P -
complete, where #P is the class of all counting functions f : {0, 1}∗ → N for
which there exists a nondeterministic polynomial time Turing machine M such
that f(x) is the number of accepting paths of M on input x, see e.g. [24]. For a
given nondeterministic polynomial time Turing machine M running in time p(n)
and an input x of length n, one can construct an acyclic automaton A such that
L∗(A) is precisely the set of all words w with |w| = (p(n) + 1)p(n) that do not
encode an accepting computation of M on input x. This construction is similar
to the proof that universality for nondeterministic finite automata is PSPACE-
complete [26]. This also shows that the PSPACE-bound in Lemma 3.3 cannot be
improved to deterministic polynomial time unless P = NP.

3.2 Complexity of the L(Qu)-theory

In Section 3.4 we will show that there exists a locally finite automatic structure A
and a recursive set U ⊆ N such that the FO(CU)-theory of A is undecidable.
To obtain a decidability result, we therefore consider an injectively ω-automatic
structure A of bounded degree. We will consider the L(C)-theory of A, where
every C ∈ C is a relation over cardinals. Furthermore, we make the following
assumptions:

Assumption 3.5. (1) (Γ, L, id) is an ω-automatic presentation for A, i.e., in
particular L is the universe of A.

(2) δ ∈ N is a bound for the degrees of the nodes in the Gaifman graph GA.

(3) For every 0 ≤ n ≤ δ the signature τ contains a unary predicate degn with
A |= degn(u) if and only if the degree of u in the Gaifman-graph GA is
exactly n.

(4) C is a countable set of relations on N ∪ {ℵ0, 2
ℵ0}.

Clearly, neither (1) nor (2) imposes restrictions on (the isomorphism type
of) A. On the other hand, (3) and (4) seem to be severe restrictions on the
class of structures and logics, we are considering. Concerning (3), note that
the set Dn of nodes w of degree n in GA is FO-definable in A also without
assuming (3). Hence, by Proposition 2.2, this language Dn ⊆ L is ω-regular,
i.e., extending A by the unary relations Dn for 0 ≤ n ≤ δ results again in
an ω-automatic structure of bounded degree. Thus, assumption (3) above is
no restriction. Finally, consider (4). If C allows more than countably many
quantifiers, then the L(C)-theory of A becomes uncountable, so it does not make
sense to ask for the decidability. Since the ω-automatic structure A contains at
most 2ℵ0 many elements, we can assume that every C ∈ C is in fact a relation
over {κ | κ ≤ 2ℵ0}. If we assume the continuum hypothesis (i.e., there is no
cardinal κ with ℵ0 < κ < 2ℵ0), (4) is therefore no restriction at all. This is the
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case even without this controversial assumption from set theory, as we will see
following Corollary 3.11 (we omit this discussion here to not distract the reader
from the main line of argument).

We will prove that under the above four restrictions, the L(C)-theory of A
can be reduced in triply exponential space to the relations in C. For this, we
need the following concept: A pair (B, b̄) is a potential (D, k)-sphere (D, k ∈ N)
if the following holds:

• B is a finite τ -structure whose Gaifman-graph has degree at most δ,

• b̄ is a k-tuple of elements from B,

• NB(2D, b̄) = B, i.e., every element of B has distance at most 2D from some
entry of the tuple b̄,

• for any y ∈ SB(2D−1, b̄), we have B |= degn(y) if and only if n is the degree
of y in the Gaifman-graph of B, and

• for any y ∈ B \ SB(2D − 1, b̄) there is a unique 0 ≤ n ≤ δ such that
B |= degn(y) and the degree of y in the Gaifman-graph of B is at most n.

Thus, a potential (D, k)-sphere is a candidate for a 2D-sphere around some k-
tuple in the structure A.

Let {b1, b2, . . . , bn} be the universe of B with b̄ = (b1, . . . , bk) (k ≤ n). Since b̄
is not necessarily repetition-free, we may have bi = bj for some i < j ≤ k, but we
may assume that bk+1, . . . , bn are pairwise different and different from b1, . . . , bk.
Then let ψ(x1, . . . , xn) denote the conjunction of the following formulas:

• xi = xj if bi = bj and xi 6= xj if bi 6= bj for i, j ∈ {1, 2, . . . , n}

• R(xi1 , xi2 , . . . , xim) if (bi1 , bi2 , . . . , bim) ∈ R for R ∈ τ with m = nR and
i1, . . . , im ∈ {1, . . . , n}

• ¬R(xi1 , xi2 , . . . , xim) if (bi1 , bi2 , . . . , bim) /∈ R for R ∈ τ with m = nR and
i1, . . . , im ∈ {1, . . . , n}.

Then set ϕ(B,b̄) = ∃xk+1 · · · ∃xn : ψ.

Lemma 3.6. There exists a constant c ∈ N such that for any potential (D, k)-
sphere (B, b̄), the existential FO-formula ϕ(B,b̄) has size at most exp(2, c(D+ k)).
For any k-tuple ū ∈ Lk, we have (A, ū) |= ϕ(B,b̄) if and only if (NA(2D, ū), ū) ∼=
(B, b̄).

Proof. Recall that the Gaifman graph of B has degree at most δ and that the
tuple b̄ has length k. Hence the 2D-sphere in B around b̄ has at most h :=
k · δ2D

many elements. Note that the number n of variables that are used in the
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formula ϕ(B,b̄) is at most k + h. Thus, the size of the formula ϕ(B,b̄) is bounded
by c′(n2 +

∑

R∈τ n
nR) ≤ exp(2, c(D + k)) for appropriate constants c′ and c.

Now let ū = (u1, . . . , uk) ∈ Lk be a k-tuple of words in L. If (NA(2D, ū), ū) ∼=
(B, b̄), it is obvious that A |= ϕ(B,b̄)(ū). Conversely, suppose A |= ϕ(B,b̄)(ū).
Since the formula ϕ(B,b̄) describes completely the relations between the nodes xi

for 1 ≤ i ≤ n, the structure (B, b̄) can be embedded into (NA(2D, ū), ū) by the
mapping f : B → NA(2D, ū) with f(bi) = ui (1 ≤ i ≤ k). We show surjectivity
of f by induction on the distance to ū. To start, let v ∈ L with dA(v, ū) = 0, i.e., v
is an entry in the tuple ū. Since b̄ is mapped onto ū, this solves the base case.
Now let dA(v, ū) = r + 1 ≤ 2D and suppose that any w ∈ L with dA(w, ū) ≤ r is
in the image under f . There exists a path v0, v1, . . . , vr, v in the Gaifman-graph
of A, where v0 belongs to the tuple ū. By induction, we find a path c0, c1, . . . , cr
in the Gaifman-graph of B such that f(ci) = vi. Thus, c0 belongs to b̄. Let m be
the degree of cr in the Gaifman graph GB of B. Since dB(cr, b̄) ≤ r ≤ 2D − 1, we
get B |= degm(cr). Hence A |= degm(vr), i.e., vr has precisely m neighbors in the
Gaifman graph of A. Since the m neighbors of cr are mapped by f to distinct
neighbors of vr, there is b ∈ B with f(b) = v.

Lemma 3.7. There are functions # : N2 → N and Φ : N3 → FO such that

(0) #(D, k) is computable in space exp(2, O(D + k)) and Φ(D, k, i) in space
exp(2, O(D + k)) + log i

(1) for any D, k ∈ N, #(D, k) is the number of potential (D, k)-spheres,

(2) for any D, k, i ∈ N, there is a potential (D, k)-sphere B(D, k, i) with ϕB(D,k,i) =
Φ(D, k, i), and

(3) for any D, k ∈ N and any potential (D, k)-sphere (B, b̄), there exists i ≤
#(D, k) with ϕ(B,b̄) = Φ(D, k, i).

Proof. Let c be the constant from Lemma 3.6. Given a formula ϕ of size at most
exp(2, c(D + k)), one can decide in linear space whether there exists a potential
(D, k)-sphere (B, b̄) with ϕ = ϕ(B,b̄): First, the formula has to be existential and
list all possible relations between the variables. Secondly, the unique structure
obtained this way has to be a potential (D, k)-sphere.

Now, to compute Φ(D, k, i), enumerate all existential formulas of size at most
exp(2, c(D + k)) and search for the i-th such formula that arises from some po-
tential (D, k)-sphere. Since the number of existential formulas of the given size
is triply exponential in D+ k, in order to compute #(D, k), we have to count up
to exp(3, D + k) which is possible in doubly exponential space.

Note that B(D, k, 1), . . . ,B(D, k,#(D, k)) enumerates the isomorphism types
of potential (D, k)-spheres for any D, k ∈ N.

In the following we identify a tuple ū = (u1, . . . , uk) with its convolution
u1 ⊗ u2 ⊗ · · · ⊗ uk. We write k = |ū| for the length of the tuple ū.
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Lemma 3.8. The following can be computed in space exp(3, O(D + k)) + log i:
INPUT: D, k, i ∈ N

OUTPUT: a k-dimensional Büchi-automaton M of size exp(3, O(D + k)) with
Lω(M) = {ū | (NA(2D, ū), ū) ∼= B(D, k, i)}.

Proof. Let ϕ = Φ(D, k, i) = ϕB(D,k,i). By Lemma 3.7, it can be computed in
space exp(2, O(D+k))+log i. From this formula, using the product construction
for Büchi-automata [27], we can build the Büchi-automaton M of size O((3q)|ϕ|)
where q is the maximal size of an automaton used in the presentation of A.
Hence the size of M (as well as the space needed for its construction) is in
exp(3, O(D+ k)). Furthermore, Lω(M) = {ū ∈ Lk | (NA(2D, ū), ū) |= ϕ} = {ū ∈
Lk | (NA(2D, ū), ū) ∼= B(D, k, i)} by Lemma 3.6.

Let us fix a function s(D + k) ∈ exp(3, O(D + k)) bounding the space in
Lemma 3.8. For a word u ∈ Σω, let the norm λ(u) be given by

λ(u) = inf{|vw| | u = vwω}

with λ(u) = ∞ if u is not ultimately periodic, i.e., not of the form vwω for
some v, w ∈ Σ∗. Let UP denote the class of all ultimately periodic ω-words over
some alphabet. In the algorithms below, we will often handle ω-words u ∈ UP
that can be given as a pair (v, w) with u = vwω and |vw| = λ(w). Note that
if M is a Büchi-automaton with n states and Lω(M) 6= ∅, then we find an ω-
word u ∈ Lω(M) such that λ(u) ≤ 2n. Note that for ū = (u1, . . . , uk) we have
λ(ū) = λ(u1⊗u2 · · ·⊗uk) ≤

∏

1≤i≤k λ(ui). Since we can build a (k+1)-dimensional
Büchi-automaton with λ(ū) many states that accepts the language ū ⊗ Σω, the
product construction for Büchi-automata and Lemma 3.8 gives:

Lemma 3.9. The following can be computed in space 3 ·s(D+k+1) ·λ(ū)+ log i
if k = |ū| > 0 and in space s(D + 1) + log i if k = |ū| = 0:
INPUT: D, k, i ∈ N and ū ∈ Lk ∩ UP
OUTPUT: a (k + 1)-dimensional Büchi-automaton M with Lω(M) = {ūw ∈

Lk+1 | (NA(2D, ūw), ūw) ∼= B(D, k + 1, i).
Moreover, if Lω(M) 6= ∅, then we can compute within the same space bound a
word w ∈ L ∩ UP with ūw ∈ Lω(M) and

λ(w) ≤

{

6 · s(D + k + 1) · λ(ū) if k > 0

2 · s(D + 1) if k = 0. (∗)

Now consider the two algorithms size and check in Figure 1 and Figure 2,
respectively. The algorithm size shall return the number of words v ∈ Σω with
A |= ϕ(ūv). The algorithm check shall check whether A |= ϕ(ū).

Let us first verify the correctness of the algorithms check and size. If size
behaves as intended, the correctness of check is rather obvious. We now discuss
size. By Lemma 3.7, line 5 iterates over all potential (D, |ū| + 1)-spheres. Since
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1 check(ϕ(x̄), ū) : {0, 1}
2 (ϕ(x̄) formula with |ū| = |x̄| many free variables,
3 ū tuple of ultimately periodic words from L)
4 case ϕ = R(x̄)
5 if ū ∈ R then return(1) else return(0) endif
6 case ϕ = ϕ1 ∧ ϕ2

7 return(check(ϕ1, ū) ∧ check(ϕ2, ū))
8 case ϕ = ¬ϕ1

9 return(¬check(ϕ1, ū))
10 case ϕ = QCy : (ψ1(x̄, y), . . . , ψn(x̄, y))
11 for i = 1 to n do
12 κi := size(ψi, ū)
13 endfor
14 if (κ1, . . . ,κn) ∈ C then return(1) else return(0) endif

Figure 1: The algorithm check

1 size(ϕ, ū) : N ∪ {ℵ0, 2
ℵ0}

2 (ϕ formula with |ū| + 1 many free variables,
3 ū tuple of ultimately periodic words from L)
4 D := qfr(ϕ); κ := 0;
5 for i := 1 to #(D, |ū| + 1) do
6 calculate an |ū| + 1-dimensional Büchi-automaton M with

Lω(M) = {ūw ∈ L|ū|+1 | (NA(2D, ūw), ūw) ∼= B(D, |ū| + 1, i)}
7 if Lω(M) 6= ∅ then
8 choose w ∈ Σω with ūw ∈ Lω(M) and λ(w) ≤ 6 · s(D + |ū| + 1) · λ(ū)
9 if check(ϕ, ūw) then
10 κ := κ + |Lω(M)|
11 endif
12 endif
13 endfor
14 return(κ)

Figure 2: The algorithm size
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D = qfr(ϕ), Theorem 3.2 implies that if A |= ϕ(ūv) and (NA(2D, ūv), ūv) ∼=
(NA(2D, ūw), ūw), then also A |= ϕ(ūw). Thus, there exists a tuple ūw ∈ Lω(M)
with A |= ϕ(ūw) if and only if A |= ϕ(ūv) for all ūv ∈ Lω(M), where M is the
Büchi-automaton calculated in line 6. To check this, we select in line 8 a “short”
tuple ūw ∈ Lω(M) and check in line 9 whether A |= ϕ(ūw) using algorithm
check. If this is true, then we add to the current κ the size of the language
Lω(M), which can be calculated by Lemma 3.3 in polynomial space wrt. the size
of M .

Next we discuss the space complexity of a call check(ψ, ε) (where ε is the
empty tuple) for a sentence ψ of quantifier rank D0. There are at most D0 nested
calls to size since each time, the quantifier rank decreases. Moreover, note that
when we call size with parameters ϕ and ū, then we have qfr(ϕ) + |ū|+ 1 ≤ D0.
Thus, the Büchi-automaton M in line 6 can be calculated in space 3 · s(D+ |ū|+
1) ·λ(ū) ≤ 3 ·s(D0) ·λ(ū) by Lemma 3.9 (since i ≤ #(D, |ū|+1) ∈ exp(3, O(D0)),
we can forget the summand log i) and also the bound 6 · s(D + |ū| + 1) · λ(ū) ≤
6 · s(D0) · λ(ū) in line 8 for the ω-word w follows from Lemma 3.9. Assume
that (u1, u2, . . . , uD0) is the tuple of ultimately periodic ω-words calculated by
the algorithm. If we set ūk = (u1, u2, . . . , uk), then we obtain:

λ(ū1) ≤ 2 · s(D0) (by (∗) in Lemma 3.9)

λ(ūk+1) ≤ λ(ūk) · λ(uk+1) ≤ 6 · s(D0) · λ(ūk)2

From this, we obtain by induction λ(ūk) ≤ 22k

· 62k−1 · s(D0)
2k−1. Since s(D0) ∈

exp(3, O(D0)) and k ≤ D0, it follows λ(ūk) ∈ exp(3, O(D0)). Hence, each of
the Büchi-automata M in line 6 can be constructed in triply-exponential space.
Since the recursion depth of the overall algorithm is bounded by the size of the
input formula and for each recursive call only a triply exponential amount of
information has to be stored, the whole algorithm can be executed in space triply
exponential in the size of the input formula. Thus, we proved:

Theorem 3.10. Let C = {Ci | i ∈ N}, where Ci is a relation on N ∪ {ℵ0, 2
ℵ0}.

Let A be an injectively ω-automatic structure of bounded degree. Then the L(C)-
theory of A can be decided in triply exponential space by a Turing machine with
oracle {(i, c̄) | i ∈ N, c̄ ∈ Ci}.

Proof. Extending the signature of A by unary relations degn, we can ensure
that Assumption 3.5 holds. Then the statement follows easily from the above
algorithms. Oracle access to {(i, c̄) | i ∈ N, c̄ ∈ Ci} is needed in line 14 of
check.

3.3 Expressiveness of the logic L(Qu)

From Theorem 3.2 we can easily deduce that the logic L(Qu) has a quite restricted
expressive power over structures of bounded degree:
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Corollary 3.11. Let A be a τ -structure of bounded degree, and let ϕ(x̄) ∈ L(Qu).
There exists a formula ψ(x̄) ∈ FO such that A |= ∀x̄(ϕ↔ ψ).

Proof. Extending the signature of A by the first-order definable unary relations
degn, we can ensure that Assumption 3.5(2,3) holds. In the further consideration,
we will use Lemmas 3.6 and 3.7 that have only been shown for injectively ω-
automatic structures satisfying Assumption 3.5. But it is straightforward to
verify that all we actually used was Assumption 3.5(2,3). Let d be the quantifier-
rank of the L(Qu)-formula ϕ. Furthermore, let # and Φ be the functions from
Lemma 3.7 that compute the number of potential (d, k)-spheres and a formula
describing the ith such (d, k)-sphere, respectively. Then set

I = {i | 1 ≤ i ≤ #(d, k),A |= ∀x̄ : (Φ(d, k, i) → ϕ)}

and ψ =
∨

i∈I Φ(d, k, i).
We show A |= ∀x̄(ψ ↔ ϕ): The implication “→” is obvious by the definition

of the set I. So assume A |= ϕ(ū). Then, by Lemma 3.7(3), there exists 1 ≤ i ≤
#(d, k) with Φ(d, k, i) = ϕ(NA(2d,ū),ū). Let v̄ ∈ Ak with (A, v̄) |= Φ(d, k, i). Then,
by Lemma 3.6, (NA(2d, v̄), v̄) ∼= (NA(2d, ū), ū). Hence, by Theorem 3.2, we get
(A, v̄) |= ϕ, i.e., we showed A |= ∀x̄(Φ(d, k, i) → ϕ) and therefore i ∈ I. Hence
A |= ψ(ū). Thus, R is indeed first-order definable by ψ.

Discussion 3.12. Recall that we postponed the discussion concerning point (4)
in Assumption 3.5 and the influence of the continuum hypothesis to our results.
More formally, we restricted attention to counting quantifiers QC where C is a
relation on cardinals in N ∪ {ℵ0, 2

ℵ0}. We now show that allowing cardinals κ

with ℵ0 < κ < 2ℵ0 does not change the results on ω-automatic structures. So let
A be some injectively ω-automatic structure of bounded degree with presentation
(Γ, L, id) and let C ∈ C be an arbitrary n-ary relation on cardinals. Furthermore,
let D = {(κ1, . . . ,κn) ∈ C | κ1, . . . ,κn ∈ N ∪ {ℵ0, 2

ℵ0}} be the restriction of C to
N ∪ {ℵ0, 2

ℵ0}. Now let ψi(x̄, y) be some L(Qu)-formula for 1 ≤ i ≤ n. Then, by
Corollary 3.11, there are first-order formulas ψ ′

i(x̄, y) such that A |= ∀x̄∀y(ψi ↔
ψ′

i) for 1 ≤ i ≤ n. Hence, by Proposition 2.2, the relations

Ri = {(ū, u) ∈ Lk × L | A |= ψi(ū, u)}

are ω-automatic. Let Ki = {u1 ⊗ · · · ⊗ uk ⊗ u | (ū, u) ∈ Ri}, which is ω-regular.
Since for every fixed ū = (u1, . . . , uk) ∈ Lk we have

|{u ∈ L | A |= ψi(ū, u)}| = |{u | (u1 ⊗ · · · ⊗ uk) ⊗ u ∈ Ki}|,

Lemma 2.4 implies that the former cardinality belongs to N ∪ {ℵ0, 2
ℵ0}. Hence

A |= QCy(ψ1(ū, y), . . . , ψn(ū, y)) ⇔ A |= QDy(ψ1(ū, y), . . . , ψn(ū, y)).

Thus, the quantifiers QC and QD are equivalent and Assumption 3.5(4) does not
impose a restriction as far as expressiveness is concerned.
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The above proof of Corollary 3.11 is not effective since it does not give a way
to compute the set I. For injectively ω-automatic structures of bounded degree,
the situation changes:

Corollary 3.13. Let C = {Ci | i ∈ N}, where Ci is a relation on N∪{ℵ0, 2
ℵ0}. Let

(Γ, L, id) be an injective ω-automatic presentation of the structure A of bounded
degree. For a given formula ϕ(x̄) ∈ L(C), one can construct in elementary space
(modulo C) a first-order formula ψ(x̄) and a k-dimensional Büchi-automaton M
(where k = |x̄|) such that for any ū ∈ Lk

A |= ϕ(ū) ⇐⇒ A |= ψ(ū) ⇐⇒ ū ∈ Lω(M) .

Proof. In view of the proof of Corollary 3.11, it remains to be shown that the
set I can be computed in elementary space: By Lemma 3.6, the formula Φ(d, k, i)
has size at most exp(2, c(d + k)). Hence, in order to calculate I, one has to de-
cide validity of formulas of size exp(2, O(d + k)) which can be done in space
exp(5, O(d+k)) by Theorem 3.10. Hence, indeed, ψ can be computed in elemen-
tary space. By Lemma 3.8, we can translate each of the formulas Φ(d, k, i) for
i ∈ I into a Büchi-automaton in elementary space. The disjoint union of these
automata is M that can, again, be computed in elementary space.

Note the similarity of Theorem 2.9 and Corollary 3.13 (both state that defin-
able relations are ω-automatic) as well as that of Corollary 2.10 and Theorem 3.10
(both state that some theories are decidable). But the proof strategies are dif-
ferent: while Corollary 2.10 was derived from Theorem 2.9, the corresponding
statement Theorem 3.10 was used to prove Corollary 3.13.

3.4 Optimality

Our main results deal with structures satisfying two assumptions: they are ω-
automatic and of bounded degree. For these structures, we showed how to decide
the L(C)-theory (modulo C) and how to translate formulas from L(C) effectively
(modulo C) into equivalent ones from FO. In this section, we show that the
two assumptions we made cannot be relaxed. First, it is shown that relaxing
“automatic” to “recursive” makes the results fail:

Theorem 3.14. There exists a recursive structure A of bounded degree such that
the FO-theory of A is decidable and the FO(∃∞)-theory of A is undecidable.

Proof. Let L ⊆ {0, 1}∗ be a recursively enumerable, but not recursive set. Then
there exists a deterministic Turing machine M such that, on input of w ∈ {0, 1}∗,
the machine M eventually stops if and only if w ∈ L. Let f(w) ∈ N∪{ω} denote
the number of steps M performs on input w. Intuitively, we consider a structure
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that consists of f(w) many copies of the word .w/ for any w ∈ {0, 1}∗. More
formally, we set

A =
⋃

w∈{0,1}∗

{w} × {0, 1, . . . , |w| + 1} × {i | 0 ≤ i < f(w)}

s = {((w, i, j), (w, i+ 1, j)) | (w, i, j), (w, i+ 1, j) ∈ A}

P0 = {(w, i, j) ∈ A | w = a1 · · · an, ai = 0}

P1 = {(w, i, j) ∈ A | w = a1 · · · an, ai = 1}

P. = {(w, i, j) ∈ A | i = 0}

P/ = {(w, i, j) ∈ A | i = |w| + 1}

A = (A, s, P0, P1)

Then A is a labeled directed graph whose degree is bounded by 2. In what
follows, we write s(x) = y for (x, y) ∈ s. For w = a1a2 · · · an ∈ {0, 1}∗, let ϕw(x)
denote the following formula

x ∈ P. ∧
∧

1≤i≤n

si(x) ∈ Pai
∧ sn+1(x) ∈ P/

Note that A |= ϕw(x) if and only if x is the .-node of some copy of .w/ in A.
Hence ϕw(x) is satisfied by precisely f(w) many nodes in A. Therefore, w ∈ L
if and only if A |= ¬∃∞x : ϕw(x). This shows that the FO(∃∞)-theory of A is
undecidable.

On the other hand, the first-order theory of A is decidable: By Gaifman’s
theorem [9], it suffices to decide sentences of the form

“there are at least n nodes x with (NA(r, x), x) ∼= B”

where n, r ∈ N and B is some finite structure. This is only interesting if B is a
line labeled in {0, 1, ., /} (which we will identify with the sequence of labels, i.e.,
a word v ∈ {0, 1, ., /}+}, and the position of x). If B is of the form .w/ with
w ∈ {0, 1}∗, then the above statement holds if and only if f(w) ≥ n which can be
decided. Any other structure B that can be found in A at all appears infinitely
often in A, i.e., the statement is true for them.

By choosing a more complicated but still recursive counting quantifier, we can
show that Theorem 3.10 even fails for locally finite automatic structures.

Theorem 3.15. There is a recursive set U ⊆ N and a locally finite automatic
structure A such that the FO(CU)-theory of A is undecidable.

Proof. We first claim that the structure A = (A, s, t), where s and t are binary
relations, that looks as follows is automatic:

24



s s s

t t t t t t t
t t

t
. . .

To see this, let L = a+ ∪ b+a∗. The automaton for s simply reads a word of the
form an (n ≥ 1) on the first tape and an+1 on the second tape. The automaton
for t reads a word of the form an (n ≥ 1) on the first tape and a word of the form
bian−i (for some 1 ≤ i ≤ n) on the second tape.

Now let A ⊆ N be a nonrecursive but recursively enumerable set of natural
numbers. Let a1, a2, a3, . . . be a recursive enumeration of A. Let U = {a1 + · · ·+
ai | i ≥ 1}. Then U is recursive. We claim that the FO(CU)-theory of A is
undecidable. Let ϕU(x) be the formula CUy : t(x, y). Then m ∈ A if and only if

A |= ∃y, z : ϕU(y) ∧ ϕU(z) ∧ sm(y) = z ∧
∧

1≤k<m

¬ϕU(sk(y)) .

This proves the theorem.

4 An open problem

In view of Corollary 2.10 and Theorem 3.15, it might be an interesting problem
to characterize those subsets U ⊆ N such that for every (ω-) automatic structure
(not necessarily of bounded degree), the FO(CU)-theory of A is decidable. Note
that by Corollary 2.10, this is true for every semilinear set U . Since (N,≤) is
automatic and since x ∈ U can be expressed as CUy : y < x, the set U has to
be decidable. It turns out that this class is rather restricted as the following two
results from the literature indicate:

First, let U = {p(n) | n ∈ N} be the range of a polynomial p over N of degree
at least two. Then the FO-theory of (N,+, U) is undecidable [6]. This implies
that the FO(CU)-theory of the automatic structure (N,+) is undecidable (express
x ∈ U as CUy : y < x).

Secondly, let U ⊆ N be not semilinear but k-recognizable for some k ≥ 2, i.e.,
the set of all base-k expansions of the elements of U is a regular language over
the alphabet {0, . . . , k−1}. Choose a number ` ≥ 2 multiplicatively independent
from k (i.e., ka 6= `b for any a, b ≥ 1). Let |` (for ` ≥ 2) be the set of all pairs
(n,m) such that n is a power of ` dividing m. By [2, Theorem 4.9] the FO-theory
of (N,+, |`, U) is undecidable. As above, the FO(CU)-theory of the automatic
structure (N,+, |`) is therefore undecidable.

Thus, in order to make the FO(CU)-theory of any automatic structure de-
cidable, the set U cannot be the range of a non-linear polynomial nor can it
be k-recognizable but not semilinear.
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