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Abstract

Logical properties of iterations of relational structures
are studied and these decidability results are applied to the
model checking of a powerful extension of pushdown sys-
tems. It is shown that the monadic chain theory of the iter-
ation of a structure A (in the sense of Shelah and Stupp) is
decidable in case the first-order theory of the structure A is
decidable. This result fails if Muchnik’s clone-predicate is
added. A model of pushdown automata, where the stack al-
phabet is given by an arbitrary (possibly infinite) relational
structure, is introduced. If the stack structure has a decid-
able first-order theory with regular reachability predicates,
then the same holds for the configuration graph of this push-
down automaton. This result follows from our decidability
result for the monadic chain theory of the iteration.

1. Introduction

In this paper, we study iterations of relational structures,
their logical properties, and apply our results to the model
checking of a powerful extension of pushdown systems.

The local full iteration A∗
loc of a relational base structure

A with universe A consists of the set A∗ of finite words
over A. One of its relations is the immediate successor
relation son. The sons of a word w carry the relations of
the base structure A. Furthermore, Muchnik’s unary clone
predicate collects all words whose final two letters are iden-
tical. Semenov [20] sketched a proof of what is now known
as Muchnik’s preservation theorem: The monadic second
order (MSO for short) theory of the local full iteration A∗

loc

can be reduced to the MSO-theory of the base structure A,
and, if two base structures have the same MSO-theory, then
the same holds for their iterations. Hence, if the MSO-
theory of a structure A is decidable, then also the MSO-
theory of the local full iteration A∗

loc is decidable. A full
proof of this result was given by Walukiewicz in [25]. A
first-order variant of Muchnik’s theorem for first-order logic
follows from [14]. For modulo counting extensions of MSO
and for guarded second order logic, a preservation theorem

was shown by Blumensath and Kreutzer [3].

The full iteration A∗
fu differs from the local full iteration

only in as far as it contains the prefix relation on A∗ instead
of the immediate successor relation son. Since this prefix
relation is the transitive closure of son, there is an MSO-
interpretation of the full iteration in the local full iteration.
As an immediate consequence from [25, 3], one obtains a
preservation theorem for MSO and its modulo counting ex-
tensions for this full iteration in place of the local full it-
eration. Since one can express in first-order logic that an
element of the full iteration (i.e., a word over the base struc-
ture) represents a path in the base structure, both parts of the
preservation theorem fail for the full iteration and first-order
logic (Propositions 3.4 and 3.5).

To overcome this problem, Section 4 is devoted to the
study of the basic iteration A∗

ba where one omits Much-
nik’s clone predicate but keeps the prefix order. For basic
iterations, the preservation theorem for MSO was proved
by Stupp [22] (cf. [21]). Rabin’s seminal result on the de-
cidability of the MSO-theory of the complete infinite bi-
nary tree [18] is an immediate corollary of this preserva-
tion theorem. For this basic iteration we are able to prove
the preservation theorem for first-order logic. In fact, we
can show even more: If a structure has a decidable first-
order theory, then its basic iteration has a decidable MSOch-
theory (Thm. 4.10). MSOch is the fragment of MSO where
second-order quantification is restricted to chains (i.e., or-
dered subsets) with respect to the tree structure of the iter-
ation. MSOch on trees was investigated in [23]. To reduce
the MSOch-theory of the basic iteration to the first-order
theory of the base structure, we proceed as follows: First,
we show that quantification over chains can be restricted
to ultimately periodic chains of bounded offset and period
length (Thm. 4.7). Truth of MSOch-formulas with bounded
quantification can be determined in a bounded prefix of the
basic iteration. Finally, this bounded prefix can be inter-
preted in the base structure. Since all these bounds can be
computed effectively, our preservation theorem follows.

Roughly speaking, the results from Section 3 and Sec-
tion 4 show that, in order to have a first-order preservation
theorem for the iteration, we are not allowed to copy an in-



finite amount of information between the levels of the tree
structure — this is in some sense the essence of the clone-
predicate. Thus, the clone-predicate has an immense effect
on the expressive power of the basic iteration although it
looks quite innocent at first glance. It should be also noted
that the clone-predicate allows to define the unravelling of
a graph G within the full iteration of G (cf. [6]).

In Section 5 we present an application of our decid-
ability result for MSOch over basic iterations to pushdown
systems. Pushdown systems were used to model the state
space of sequential programs with nested procedure calls,
see e.g. [9]. Model-checking problems for pushdown sys-
tems were studied for various temporal logics (LTL, CTL,
modal µ-calculus) [1, 9, 13, 24]. When modeling recur-
sive sequential programs via pushdown systems, it is neces-
sary to abstract local variables (which have to be stored on
the stack) with an infinite range (like for instance integers)
to some finite range, in order to obtain a finite pushdown
alphabet. This abstraction may lead to so called spurious
counterexamples [8]. Here, we introduce pushdown sys-
tems where the stack alphabet is the (possibly infinite) uni-
verse of an arbitrary stack structure A. With any change
of the control state, our pushdown model associates one of
three basic operations: (i) replacing the topmost symbol of
the stack by another one according to some binary predi-
cate of the stack structure, (ii) pushing or (iii) popping a
symbol from some unary predicate of the stack structure.
Such a pushdown system can model programs with nested
procedure calls, where procedures use variables with an in-
finite domain. The configuration graph of such a pushdown
system is defined as for finite stack alphabets. We study
the logic FOREG for these configuration graphs. FOREG
is the extension of first-order logic which allows to define
new binary predicates by regular expressions over the bi-
nary predicates of the base structure A. Variants of FOREG
were studied in [15, 19, 26]. FOREG is a suitable lan-
guage for the specification of reachability properties of re-
active systems; its expressive power is between first-order
logic and MSO. Based on our decidability result Thm. 4.10
we show that if FOREG is decidable for the base struc-
ture A of a pushdown system, then FOREG remains de-
cidable for the configuration graph of the pushdown system
(Thm. 5.1). For this result, it is important that in our push-
down model procedure calls and returns cannot transfer an
infinite amount of information to another call level. This re-
flects our undecidability result Proposition 3.4 for the clone
predicate.

2. Preliminaries

Let Σ be a (not necessarily finite) alphabet. With Σ+ we
denote the set of all finite non-empty words over Σ. Then
Σ∗ = Σ+ ∪ {ε} with ε the empty word. With ¹ we denote

the prefix relation on finite words and ≺ is its non-reflexive
part. For a subalphabet Γ ⊆ Σ and a word u ∈ Σ∗ we de-
note with |u|Γ the number of occurrences of symbols from
Γ in u. In case Σ is finite, REG(Σ) denotes the set of all
regular languages over the alphabet Σ.

2.1. Iterations

Let A = (A, (RA)R∈σ) be a relational structure over the
finite relational signature σ. The basic iteration A∗

ba of A is
the structure

A∗
ba = (A∗,¹, (R̂)R∈σ, ε) where

R̂ = {(ua1, . . . , uan) | u ∈ A∗, (a1, . . . , an) ∈ RA}.

Example 2.1 Suppose the structure A has two elements a
and b and two unary relations R1 = {a} and R2 = {b}.
Then R̂1 = {a, b}∗a and R̂2 = {a, b}∗b. Hence the basic
iteration A∗

ba can be visualized as a complete binary tree
with unary predicates telling whether the current node is
the first or the second son of its father. In addition, the root
ε is a constant of the structure A∗

ba.

In the full iteration A∗
fu of A, we have the additional

unary clone predicate cl = {uaa | u ∈ A∗, a ∈ A}, i.e.,

A∗
fu = (A∗,¹, cl, (R̂)R∈σ, ε) .

We will also consider a relaxation of the full iteration
where the prefix relation is replaced by the direct successor
relation son = {(u, ua) | a ∈ A∗, a ∈ A}, i.e.,

A∗
loc = (A∗, son, cl, (R̂)R∈σ, ε) .

We refer to this iteration as local iteration. Note that A∗
fu is

MSO-definable (but not first-order definable) in A∗
loc.

2.2. Logics

Let σ be some signature. Atomic formulas are
R(x1, . . . , xn), x1 = x2, and x1 ∈ X where x1, . . . , xn are
individual variables, R ∈ σ is an n-are relational symbol,
andX is a set variable. Monadic second-order formulas are
obtained from atomic formulas by conjunction, negation,
and quantification ∃x and ∃X for x an individual and X a
set variable. The satisfaction relation (A, ā, C̄) |= ϕ(x̄, X̄)
is defined as usual with the understanding that set variables
range over subsets of A. A first-order formula is a monadic
second-order formula without set variables.

Now let ¹ be a designated binary relation symbol in σ.
A monadic second-order chain formula or MSOch-formula
is just a monadic second-order formula. For these MSOch-
formulas, we define a new satisfaction relation |=ch: it is de-
fined as |= with the only difference that set variables range
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over chains (i.e., sets whose elements are mutually compa-
rable) in (A,¹). Note that if ϕ is a first-order formula, then
A |= ϕ if and only if A |=ch ϕ.

Let A and B be two σ-structures. Then we write
A ≡MSO

m B if, for any MSO-formula ϕ of quantifier depth
at most m, we have A |= ϕ ⇐⇒ B |= ϕ. This relation
is an equivalence relation. If we only consider first-order
formulas (MSOch-formulas, resp.) ϕ of quantifier depth at
most m, then we write A ≡FO

m B (A ≡ch
m B, resp.).

3. The theory of the full iteration

We first deal with MSO-theories. Muchnik’s theorem
sharpens an earlier result of Stupp. Its full proof can be
found in [25] (cf. also [2]).1

Theorem 3.1 Let σ be some finite relational signa-
ture. There exists a computable function red :
MSO(σ, cl, son) → MSO(σ) such that, for any σ-
structure A, we have A |= red(ϕ) if and only if A∗

loc |= ϕ.

One infers immediately:

Corollary 3.2 If the MSO-theory of a structure A is de-
cidable, then the MSO-theory of its local iteration A∗

loc is
decidable as well.

To derive another corollary, let m ∈ N be arbitrary.
Then, there is a finite set Φ of MSO-formulas such that any
MSO-sentence of quantifier depth at most m is logically
equivalent to some sentence from Φ. Let n be an upper
bound for the quantifier depth of red(ϕ) for ϕ ∈ Φ. This
observation yields:

Corollary 3.3 For any m ∈ N, there exists n ∈ N such
that, for any two σ-structures A and B with A ≡MSO

n B, we
have A∗

loc ≡
MSO
m B∗

loc.

Note that the MSO-theories of the local and the full it-
eration can be reduced onto each other. Hence Muchnik’s
Thm. 3.1 and Corollaries 3.2 and 3.3 hold for the full iter-
ation A∗

fu in place of the local iteration A∗
loc equally well.

Surprisingly, this is not the case for first-order logic as we
show next.

Proposition 3.4 There exists a structure A with a decid-
able first-order theory such that the full iteration A∗

fu has
an undecidable first-order theory.

1Thm. 3.1 and its two corollaries also hold for counting extensions of
MSO and for guarded second-order logic [3].

Proof. Let M be a Turing machine that accepts a non-
recursive set L (we assume that M accepts with empty
tape). Let Σ be the set of tape symbols and states
of M. Then consider the following structure A =
(A,E, (Ea)a∈Σ) where A is the set of configurations of M
and, for any configurations c1, c2 and any a ∈ Σ, we have

• (c1, c2) ∈ E if and only if c2 can be obtained from c1
by one step of the Turing machine.

• (c1, c2) ∈ Ea if and only if c2 = c1a.

The first-order theory of A is decidable since A is auto-
matic [12]. There is a formula α with one free variable
x such that (A, c) |= α if and only if c is a configura-
tion with empty tape. Furthermore, from a state q and
an input word w, we can write a first-order formula ϕqw

with one free variable x such that, for any configuration c,
(A, c) |= ϕqw if and only if c = qw.

Now consider the full iteration of A. The formulas α̂ and
ϕ̂qw are obtained by restricting the quantification to siblings
of the free variable x. Furthermore, let w be some input
word and let q0 be the initial state of M. Then w is ac-
cepted if and only if there exists a sequence of configura-
tions u = c0c1 . . . cn ∈ A∗ such that the following hold in
the full iteration of A: (i) the minimal nonempty prefix c0
of u satisfies ϕ̂q0w, (ii) u satisfies α̂, and (iii) for all proper
and non-empty prefixes v of u, we have

∃v′, v′′ : v l v′ ¹ u ∧ v l v′′ ∧ cl(v′′) ∧ Ê(v′′, v′),

where x l y is shorthand for x ≺ y ∧ ∀z(x ¹ z ≺ y →
x = z). Since the language of the Turing machine M is
non-recursive, this proves that the first-order theory of the
full iteration of A is undecidable. ut

Hence, Corollary 3.2 and therefore Thm. 3.1 with the full
iteration taking the place of the local iteration and first-order
logic replacing MSO do not hold. A similar problem arises
with respect to Corollary 3.3.

Proposition 3.5 For every n ∈ N there exist structures An

and Bn such that An ≡FO
n Bn but (An)∗fu 6≡FO

6 (Bn)∗fu.

Proof. For n ∈ N, let An denote the structure An =
(Z, succ, 0, 2n+1) that consists of a copy of the integers
with successor relation and two constants a and b. Note
that in An there is a path of length 2n+1 from a to b. We
will also consider the structure Bn = (Z, succ, 2n+1, 0) that
differs from An only in the values of the constants (that are
exchanged). Then the structures An and Bn cannot be dis-
tinguished by any first-order sentence of quantifier rank at
most n, i.e., An ≡FO

n Bn.
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Now consider the following sentence ϕ in the language
of the full iteration of An and Bn:

∃x ∈ â ∃z ∈ b̂ : x ¹ z ∧

∀y : x ¹ y ≺ z → ∃y′∃y′′
{
y l y′ ¹ z ∧ y l y′′∧

cl(y′′) ∧ Ê(y′′, y′)

}

To show that An satisfies ϕ, take x = 0 and z =
01 2 . . . 2n+1. Since the last letters of these words are a
and b, resp., they belong to â and b̂, resp. Any word y with
x ¹ y ≺ z has the form 0 1 . . . i for some 0 ≤ i < 2n+1.
Then y′ = y (i+1) and y′′ = y i ensure that ϕ indeed holds.

On the other hand, B∗
n does not satisfy ϕ: Suppose it

would, i.e., there are x = x′a and z = xa1a2 . . . akb

satisfying the second line of the formula ϕ. Then
a a1 a2 . . . ak b is a path in B from a to b - but such a path
does not exist. Since ϕ has quantifier rank 6, we obtain
(An)∗fu 6≡FO

6 (Bn)∗fu. ut

In Proposition 3.4 and 3.5, the interplay between the
prefix relation and the clone-predicate is crucial. If just
one of these two relations is present, a first-order version
of Muchnik’s theorem and its corollaries holds. For the
clone-predicate, this follows from a more general result on
so called factorized unfoldings from our earlier paper [14]
(see Theorem 3.6 below). For the prefix relation, we prove
the result in this paper (Theorem 4.10 and Corollary 4.11).

Theorem 3.6 ([14]) Let σ be a finite relational signature.

• Let σ be some finite relational signature. There exists
a computable function red : FO(σ, cl, son) → FO(σ)
such that, for any σ-structure A, we have A |= red(ϕ)
if and only if A∗

loc |= ϕ.

• If the first-order theory of a structure A is decidable,
then the first-order theory of its local iteration A∗

loc is
decidable as well.

• For any m ∈ N, there exists n ∈ N such that, for any
two σ-structures A and B with A ≡FO

n B, we have
A∗

loc ≡
FO
m B∗

loc.

4. The MSO
ch-theory of the basic iteration

In this section, we will show that statements analogous
to Muchnik’s Thm. 3.1 and Corollaries 3.2 and 3.3 hold for
basic iterations and first-order logic. In doing so, it turns out
that we can even consider the MSOch-theory of the basic
iteration. Let us fix a base structure A = (A, (R)R∈σ) over
a signature σ. In the rest of Section 4, we write

t = A∗
ba. (1)

4.1. Preliminaries

For i, ` ∈ N, let τi,` be the extension of the signature
(σ,¹) by i individual and ` chain constants. We write τi

for τi,0. From ` and m, one can effectively compute a fi-
nite upper bound Ni(`,m) for the number of equivalence
classes of ≡ch

m on the class of all τi,`-structures, see [10].
For u ∈ A∗, let tu be the structure (uA∗,v, (R̄)R∈σ, u)

over the signature τ1, where (i) the relation v is the re-
striction of ¹ to uA∗ and (ii) R̄ is the restriction of R̂ to
uA+ (the restriction to uA∗ could contain tuples of the
form (u, u, . . . , u) which are excluded from R̄). For any
u, v ∈ A∗, the mapping f : tu → tv with f(ux) = vx is an
isomorphism – this is the reason to consider R̄ and not the
restriction of R̂ to uA∗. Similarly, the τ2-structure tu,v =
(uA∗ \vA+,v, (R̄)R∈σ, u, v) is defined for u, v ∈ A∗ with
u ¹ v. Here, again, R̄ is the restriction of R̂ to uA+ \ vA+.

Example 2.1 (continued). In the case of Example 2.1, tu
is just the subtree rooted at the node u. On the other hand,
tu,v is obtained from tu by deleting all descendents of v
and marking the node v as a constant. Thus, we can think
of tu,v as a tree with a marked leaf. These special trees are
fundamental in the work of Gurevich and Shelah [11] and in
Thomas’ study of the monadic second-order chain theory of
the complete binary tree [23]. The following constructions
generalize those from [11, 23] to the more general context
of basic iterations as considered here.

In the following, fix some ` ∈ N. We then define the op-
erations of product and infinite product of τi,`-structures: If
A is a τ2,`-structure with second individual constant v and B
a disjoint τi,`-structure with first individual constant u, then
their product A·B is a τi,`-structure. It is obtained from the
union of A and B by identifying v and u and erasing it from
the list of constants. In other words, the individual constants
in A · B are the first constant from A and all but the first
constant from B. Furthermore, the chains from A and B are
united. Now let An be disjoint τ2,`-structures with individ-
ual constants un and vn for n ∈ N. Then the infinite product∏

n∈N
An is a τ1,`-structure. It is obtained from the union

of the structures An by identifying vn and un+1 for any
n ∈ N. The only individual constant of this infinite product
is u0. If An

∼= An+1 for all n ∈ N, then we write simply
Aω

0 for the infinite product of the structures An. Standard
applications of Ehrenfeucht-Fraı̈ssé-games (cf. [7]) yield:

Proposition 4.1 Let m, ` ∈ N, An,A
′
n be τ2,`-structures

for n ∈ N and let B,B′ be some τi,`-structures such that
An ≡ch

m A′
n for n ∈ N and B ≡ch

m B′. Then

A0 · B ≡ch
m A′

0 · B
′ and

∏

n∈N

An ≡ch
m

∏

n∈N

A′
n.
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4.2. Ultimately periodic chains and their combina-
torics

For a word u ∈ A∞ = A∗ ∪ Aω , let ↓u ⊆ A∗ denote
the set of finite prefixes of u, and ⇓u = ↓u\{u}. Similarly,
↓C =

⋃
{↓u | u ∈ C} for C ⊆ A∗. Finally, u−1C = {v ∈

A∗ | uv ∈ C} for u ∈ A∗ and C ⊆ A∗.
A chainC ⊆ A∗ is ultimately periodic if it can be written

as E ∪ uv∗F with E,F ⊆ A∗ finite and u, v ∈ A∗. If
E ⊆ ⇓u and F ⊆ ⇓v, it is ultimately |v|-periodic with offset
|u|. Since v = ε is possible, finite chains are ultimately
0-periodic. Furthermore, if C is ultimately p-periodic with
offset q, then it is also ultimately xp-periodic with offset q+
y for any x, y ∈ N with x ≥ 1.

In the following, we will consider the structure t from
(1) together with ` + 1 chains C1, . . . , C`, C. To make
the presentation more concise, write C̄ for the `-tuple
(C1, . . . , C`). We will also meet structures tu and tu,v to-
gether with the restriction of C̄, C to their domain. Again
for simplicity, we write, e.g., (tu, C) for (tu, C ∩ uA∗).

4.3. Shortening ultimately periodic chains

Suppose we are in the realm of Example 2.1 and letCi ⊆
A∗ be regular and let ui ∈ A∗. Then, as a corollary from
Rabin’s tree theorem, for anyC ⊆ A∗, there exists a regular
set D ⊆ A∗ that satisfies the same MSO-formulas of quan-
tifier depthm in the structure (t, C1, . . . , C`, u1, . . . , un) as
C does. In this section, we want to prove a similar result for
basic iterations. For this, “regular set” is replaced by “ulti-
mately periodic chain”. In addition, we want to bound the
offset and the period of the chain D.

We start showing that some ultimately periodic chain D
exists that can take the role of C (Proposition 4.2). Propo-
sition 4.6 will allow to bound the period of D (thereby pos-
sibly enlarging the offset). Finally, Lemma 4.3 bounds the
size of the offset (without changing the period). Finally,
Thm. 4.7 shows that we succeeded in our attempt to find an
equivalent ultimately periodic chain D of small period and
offset.

4.3.1. Existence of ultimately periodic chains

Proposition 4.2 Let m ∈ N, C1, . . . , C` ⊆ A∗ be ul-
timately periodic chains and let C ⊆ A∗ be any chain.
Then there exists an ultimately periodic chain D such that
(t, C̄, C) ≡ch

m (t, C̄,D).

Proof. AssumeC not to be ultimately periodic (and there-
fore infinite) and let α ∈ Aω with C ⊆ ↓α. By Ramsey’s
theorem (see [16] for this application), there is a strictly in-
creasing sequence u1 ≺ u2 ≺ u3 · · · of non-empty prefixes
of α such that,

(a) |u1| exceeds the offset of all the chains C1, C2, . . . , C`,

(b) for any 1 ≤ i ≤ ` and for any n ≥ 1, the period length
of Ci divides |un+1| − |un|, and

(c) for any 1 ≤ i < j, we have (tu1,u2
, C̄, C) ≡ch

m

(tui,uj
, C̄, C).

This implies

(t, C̄, C) = (tε,u1
, C̄, C) ·

∏

n>0

(tun,un+1
, C̄, C)

≡ch
m (tε,u1

, C̄, C) · (tu1,u2
, C̄, C)ω

Now let v ∈ A+ with u1v = u2 and consider E = C∩↓u1,
F = u−1

1 (C ∩ ↓u2) = u−1
1 C ∩ ↓v, and D = E ∪ u1v

∗F .
Because of (a) and (b) we can continue as follows:

= (tε,u1
, C̄, E) · (tu1,u2

, C̄, F )ω

∼= (tε,u1
, C̄,D) ·

∏

n≥0

(tu1vn,u1vn+1 , C̄,D)

= (t, C̄,D).

Since E ⊆ ↓u1v
ω and F ⊆ ↓vω, the set D is linearly or-

dered and therefore ultimately periodic. ut

4.3.2. Ultimately periodic chains with small offset

Lemma 4.3 Let m > 0, Ci ⊆ A∗ be an ultimately pi-
periodic chain with offset qi for 1 ≤ i ≤ ` and let
C ⊆ A∗ be an ultimately p-periodic chain with offset q >
max(q1, . . . , q`) + lcm(p1, . . . , p`) · (N1(` + 1,m) + 2).
Then there exists an ultimately p-periodic chain D with off-
set q − lcm(p1, . . . , p`) such that (t, C̄, C) ≡ch

m (t, C̄,D).

Proof. Let C = E ∪ uv∗F with E ⊆ ⇓u, F ⊆ ⇓v,
|u| = q and |v| = p. Then we can write u = u′xyz

such that |u′| = max(q1, . . . , q`), |x|, |y| > 0 are mul-
tiples of lcm(p1, . . . , p`), z 6= ε, and (tu′x, C̄, C) ≡ch

m

(tu′xy, C̄, C).
When deleting in the structure (t, C̄, C) all nodes

from u′xA+ \ u′xyA∗, we end up with (tε,u′x, C̄, C) ·
(tu′xy, C̄, C). Since u′ is long enough and the lengths of x
and y are multiples of lcm(p1, . . . , p`), the structures (t, C̄)
and (tε,u′x, C̄) · (tu′xy, C̄) are isomorphic. Hence there is a
chain D ⊆ A∗ such that

(t, C̄, C) = (tε,u′x, C̄, C) · (tu′x, C̄, C)

≡ch
m (tε,u′x, C̄, C) · (tu′xy, C̄, C)

∼= (t, C̄,D).

This chain has the same period as C, but the offset is re-
duced by |y| ≥ lcm(p1, . . . , p`). ut

A similar proof yields the following lemma.
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Lemma 4.4 Let m > 0, Ci ⊆ A∗ be an ultimately pi-
periodic chain with offset qi for 1 ≤ i ≤ k and let ui ∈ A∗

be words with |ui| = qi for k < i ≤ ` and let u ∈ A∗

with |u| ≥ max(q1, . . . , q`) + lcm(p1, . . . , pk) · (N1(` +
1,m) + 2). Then there exists a word v ∈ A∗ with |v| ≤
|u| − lcm(p1, . . . , pk) and (t, C̄, ū, u) ≡ch

m (t, C̄, ū, v).

4.3.3. Ultimately periodic chains with small period

Lemma 4.5 Let m ∈ N, Ci ⊆ A∗ be an ultimately pi-
periodic chain with offset qi for 1 ≤ i ≤ ` and let C ⊆ A∗

be an ultimately p-periodic chain with offset q. Suppose
furthermore p > 2 lcm(p1, . . . , p`)(N2(`+ 1,m) + 2) is a
multiple of lcm(p1, . . . , p`). Then there exists an ultimately
p′-periodic chain D ⊆ A∗ such that p′ < p is a multiple of
lcm(p1, . . . , p`) and (t, C̄, C) ≡ch

m (t, C̄,D).

Proof. It is sufficient to consider an infinite chain C. In
this case, one first shows the existence of u,w ∈ A∗, v ∈
w+ and F, F1, . . . , F` ⊆ A∗ such that the following hold:

• |w| = lcm(p1, . . . , p`) and p = |v|

• ∅ 6= F ⊆ ⇓v and v∗F = u−1C =: C ′

• ∅ 6= Fi ⊆ ⇓w andw∗Fi = u−1Ci =: C ′
i for 1 ≤ i ≤ `

The word v can be factorized as x1x2x3 such that x1, x2 ∈
w+, x3 ∈ w∗, and

(tx1,vx1
, C̄ ′, C ′) ≡ch

m (tx1x2,vx1
, C̄ ′, C ′).

For n > 0, we have vnx1 = x1(x2x3x1)
n. One can show

that

(tx1,vx1
, C̄ ′, C ′) ∼= (tvnx1,vn+1x1

, C̄ ′, C ′) and

(tx1x2,vx1
, C̄ ′, C ′) ∼= (tvnx1x2,vn+1x1

, C̄ ′, C ′).

Hence we have

(t, C̄ ′, C ′) = (tε,vx1
, C̄ ′, C ′) ·

∏

n>0

(tvnx1,vn+1x1
, C̄ ′, C ′)

∼= (tε,vx1
, C̄ ′, C ′) · (tx1,vx1

, C̄ ′, C ′)ω

≡ch
m (tε,vx1

, C̄ ′, C ′) · (tx1x2,vx1
, C̄ ′, C ′)ω

∼= (tε,vx1
, C̄ ′, C ′) ·

∏

n>0

(tvnx1x2,vn+1x1
, C̄ ′, C ′)

∼= (t, C̄ ′, D′)

for some |x3x1|-periodic chain D′.
Then p′ := |x3x1| is a multiple of lcm(p1, . . . , p`). Fur-

thermore

(t, C̄, C) = (tε,u, C̄, C) · (tu, C̄, C)
∼= (tε,u, C̄, C) · (t, C̄ ′, C ′)

≡ch
m (tε,u, C̄, C) · (t, C̄ ′, D′)

∼= (t, C̄,D)

with D = (C ∩ ⇓u) ∪ uD′. Since the period length of D′

equals p′, the chain D is ultimately p′-periodic. ut

Proposition 4.6 Let m ∈ N, Ci ⊆ A∗ be an ultimately pi-
periodic chain with offset qi for 1 ≤ i ≤ ` and let C ⊆ A∗

be an ultimately p-periodic chain. Then there exists an
ultimately p′-periodic chain D such that (t, C̄, C) ≡ch

m

(t, C̄,D) and p′ ≤ 2 lcm(p1, . . . , p`) · (N2(`+ 1,m) + 2).

Proof. Set p′0 = p · 2 lcm(p1, . . . , p`) · (N2(` + 1,m) +
2). This allows to apply Lemma 4.5 iteratively. The re-
sult is a sequence of ultimately p′i-periodic chains with
p′0 > p′1 > · · · p′n. This process terminates once p′n ≤
2 lcm(p1, . . . , p`) · (N2(`+ 1,m) + 2). ut

Now we can finally prove that any chain C can be re-
placed by an ultimately periodic chain D of small period
and offset without changing the MSOch-properties:

Theorem 4.7 Let m ∈ N, Ci ⊆ A∗ be ultimately pi-
periodic chains with offset qi for 1 ≤ i ≤ ` and let C ⊆ A∗

be a chain. Then there exists an ultimately p′-periodic chain
D with offset q′ ≤ max(q1, . . . , q`) + lcm(p1, . . . , p`) ·
(N1(` + 1,m) + 2) and p′ ≤ 2 lcm(p1, . . . , p`) · (N2(` +
1,m) + 2) such that (t, C̄, C) ≡ch

m (t, C̄,D).

Proof. By Prop. 4.2, we can assume C to be ulti-
mately periodic. Prop. 4.6 allows to bound its pe-
riod by 2 lcm(p1, . . . , p`) · (N2(` + 1,m) + 2). Al-
though this increases the offset, an iterative application of
Lemma 4.3 shortens the offset again to a value of at most
max(q1, . . . , q`) + lcm(p1, . . . , p`) · (N1(` + 1,m) + 2)
without increasing the period. ut

4.4. Bounded MSOch-theory

For an MSOch-formula ψ and q, p ∈ N let ∃C ≤ (q, p) :
ψ stand for “there exists an ultimately p′-periodic chain C
with offset at most q and p′ ≤ p such that ψ holds”. Simi-
larly, ∃x ≤ q : ψ means “there exists a word x of length at
most q such that ψ holds”. The formulas ∀C ≤ (q, p) : ψ
and ∀x ≤ q : ψ should be understood similarly. A bounded
MSOch-sentence is an expression of the form

Q1C1 ≤ (q1, p1) · · ·Q`C` ≤ (q`, p`)

Q′
1x1 ≤ r1 · · ·Q

′
kxk ≤ rk : ψ

where ψ is a Boolean combination of atomic formulas and
Qi, Q

′
j ∈ {∃,∀}. Standard techniques allow to shift set

quantifiers to the front in a prenex normalform formula (at
the expense of additional quantifiers). Hence Thm. 4.7 and
Lemma 4.4 imply:
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Proposition 4.8 From an MSOch-sentence ϕ, one can ef-
fectively compute a bounded MSOch-sentence ψ such that,
for any structure A, we have A∗

ba |=ch ϕ if and only if
A∗

ba |=ch ψ.

Remark 4.9 If we restrict set quantification in MSOch-
sentences further to ultimately periodic chains, we obtain
a new satisfaction relation |=period (that only makes sense
for iterations). The above proposition implies in particu-
lar that this seemingly new satisfaction relation equals |=ch.
This consequence parallels Rabin’s result [17] where he re-
stricts set quantifications to run over regular sets.

4.5. Reduction of the MSOch-theory to the first-
order theory

Theorem 4.10 From an MSOch-sentence ϕ, one can effec-
tively compute a first-order sentence ϕ′ such that, for any
structure A, we have A∗

ba |=ch ϕ if and only if A |= ϕ′.

Proof. Let A be some structure. For n ∈ N let A≤n =
(A≤n,¹, (R̂)R∈σ, eq) where (i) A≤n is the set of words
in A∗ of length at most n and (ii) (u, v) ∈ eq if and only
if there exist a ∈ A and u′, v′ ∈ A∗ with u = u′a and
v = v′a. Now let ϕ be a bounded MSOch-sentence with
first-order kernel ψ and let n ∈ N be the maximal number
appearing in the bounds in ϕ. Note that ψ does not relate
the chains Ci directly, but only indirectly via the individual
variables xj . This allows to write a first-order formula α in
the language of A≤n such that A∗

ba |=ch ϕ if and only if
A≤n |= α. Here, the predicate eq is necessary in order to
express the periodicity of a chain.

Note that the first-order theory of A≤n can be reduced
to that of A. There is even such a reduction that works
uniformly in n and A. Hence the proof is complete. ut

Since Thm. 4.10 parallels Muchnik’s Theorem 3.1, we
can derive similar corollaries:

Corollary 4.11 Let σ be some finite relational signature.

• If the first-order theory of a σ-structure A is decidable,
then the MSOch-theory of its basic iteration A∗

ba is
decidable as well.

• For any m ∈ N, there exists n ∈ N such that, for any
two σ-structures A and B with A ≡FO

n B, we have
A∗

ba ≡ch
m B∗

ba.

5. FOREG over pushdown systems

In this section we apply our decidability result for
MSOch over basic iterations to pushdown systems. We in-
troduce pushdown systems where the stack alphabet is the

(possibly infinite) universe of an arbitrary base structure G.
Push- and pop operations are triggered via the relations of
the base structure G and a finite set of control states, but are
independent from the topmost stack symbol. The configu-
ration graph of such a pushdown system is defined as for
finite stack alphabets. We study the logic FOREG for these
configuration graphs. FOREG is the extension of first-order
logic which allows to define new binary predicates by regu-
lar expressions over the binary predicates of the base struc-
ture A. Based on our decidability result Corollary 4.11 we
show that if FOREG is decidable for the base structureG of
a pushdown system, then FOREG remains decidable for the
configuration graph of the pushdown system (Thm. 5.1).

5.1. The logic FOREG

Let Σ be a finite alphabet of labels and let G =
(A, (Eσ)σ∈Σ, R1, . . . , Rm) be a relational structure, where
Eσ ⊆ A × A is a binary relation and R1, . . . , Rm are ad-
ditional non-binary relations. For a word w = σ1 · · ·σn

with σi ∈ Σ we define the binary relation
w
→G = Eσ1

◦

· · · ◦ Eσn
. We have

ε
→G = idA and

σ
→G = Eσ for σ ∈ Σ.

For a regular language L ⊆ Σ∗ we define reachL =⋃
w∈L

w
→G. An FOREG-formula over the structure G

is simply a first-order formula over the extended structure
(A, (reachL)L∈REG(Σ), R1, . . . , Rm).

5.2. Pushdown systems over infinite stack alphabets

A pushdown system S = (Q,G, τ) over a stack structure
G is given by the following data:

• G is a relational structure of the form
G = (A, (eqα)α∈Σ1

, (pushβ)β∈Σ2
, (popγ)γ∈Σ3

,⊥),
where Σ1, Σ2, Σ3 are finite and mutually disjoint
alphabets (let Σ = Σ1 ∪ Σ2 ∪ Σ3 in the following),
eqα ⊆ A×A, pushβ ,popγ ⊆ A, and ⊥ ∈ A.

• Q is a finite set of states such that Q ∩A = ∅.

• τ : Σ → Q×Q

With S we associate the configuration graph C(S) =
(A+Q, (Eσ)σ∈Σ), where:

• Eα = {(wap,wbq) | w ∈ A∗, (a, b) ∈ eqα, τ(α) =
(p, q)} for α ∈ Σ1

• Eβ = {(wp,waq) | w ∈ A+, a ∈ pushβ , τ(β) =
(p, q)} for β ∈ Σ2

• Eγ = {(wap,wq) | w ∈ A+, a ∈ popγ , τ(γ) =
(p, q)} for γ ∈ Σ3

The following theorem is the main result of this section:
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Theorem 5.1 Let G be a stack structure with decidable
FOREG-theory. Then the configuration graph C(S) has a
decidable FOREG-theory.

The rest of this section is devoted to the proof of this the-
orem. The idea is to define, using the logic FOREG, a suit-
able structure A in the stack structure G. Since we assume
that the FOREG-theory ofG is decidable, it follows that the
first-order theory of A is decidable. Thus, by Corollary 4.11
the MSOch-theory of the basic iteration A∗

ba is decidable.
To obtain Thm. 5.1, we give an MSOch-interpretation of
the configuration graph C(S) in A∗

ba.
For a finite automaton T and states µ and ν of T , let

L(T, µ, ν) be the set of words that label some path from µ

to ν in T .
Fix regular languages L1, . . . , Lk ⊆ Σ∗. Then there ex-

ists a finite automaton T = (Θ,Σ, δ) with state set Θ such
that every language Li is a union of languages of the form
L(T, µ, ν) for certain states µ, ν ∈ Θ. For µ, ν ∈ Θ let

reachµ,ν = {(up, vq) ∈ A+Q×A+Q |

∃w ∈ L(T, µ, ν) : up
w
→C(S) vq}.

Thus, reachµ,ν = reachL for L = L(T, µ, ν). We will
show that the first-order theory of the structure

B = (A+Q, (reachµ,ν)µ,ν∈Θ) (2)

is decidable. Since the decision procedure for the first-order
theory of B will be uniform in the automaton T , this proves
Thm. 5.1.

Let µ, ν ∈ Θ, p, q ∈ Q, u ∈ A+, and a ∈ A. We write
(up, uaq) ∈ reach(+)

µ,ν if and only if there exist β ∈ Σ2 and

x ∈ Σ∗ such that βx ∈ L(T, µ, ν), up
βx
→C(S) uaq, |y|Σ2

≥
|y|Σ3

for every prefix y of x, and |x|Σ2
= |x|Σ3

. Thus,
(up, uaq) belongs to the relation reach(+)

µ,ν if there exists a
path from up to uaq in the configuration graph C(S) whose
label belongs to L(T, µ, ν) such that all the configurations
along this path except the very first one up are of the form
uvr for some v ∈ A+, and r ∈ Q. Note that (up, uaq) ∈

reach(+)
µ,ν implies (vp, vaq) ∈ reach(+)

µ,ν for all v ∈ A+.

Symmetrically, we write (uap, uq) ∈ reach(−)
µ,ν if and only

if there exist γ ∈ Σ3 and x ∈ Σ∗ such that xγ ∈ L(T, µ, ν),
uap

xγ
→C(S) uq, |y|Σ2

≥ |y|Σ3
for every prefix y of x, and

|x|Σ2
= |x|Σ3

. Finally, for µ, ν ∈ Θ, p, q ∈ Q, u, v ∈ A+

we write (up, vq) ∈ reach(=)
µ,ν if and only if there exists w ∈

L(T, µ, ν) such that up
w
→C(S) vq, |y|Σ2

≥ |y|Σ3
for every

prefix y of w, and |w|Σ2
= |w|Σ3

. Thus, (up, vq) belongs
to the relation reach(+)

µ,ν if there exists a path from up to
vq in the configuration graph C(S) whose label belongs to
L(T, µ, ν) such that all the configurations along this path
are of the form wr for some r ∈ Q and w ∈ A+ with

|w| = |u| = |v|. Thus, (uap, ubq) ∈ reach(=)
µ,ν for some

(and hence all) u ∈ A∗ if and only if (ap, bq) ∈ reachµ,ν .

Lemma 5.2 For c, d ∈ A+Q and µ, ν ∈ Θ we have
(c, d) ∈ reachµ,ν if and only if there exist m,n ≥
0, µm, . . . , µ0, ν0, . . . , νn ∈ Θ, and configurations
cm, . . . , c0, d0, . . . , dn ∈ A+Q such that:

• cm = c, dn = d, µm = µ, νn = ν

• (ci, ci−1) ∈ reach(−)
µi,µi−1

for 1 ≤ i ≤ m

• (c0, d0) ∈ reach(=)
µ0,ν0

• (dj−1, dj) ∈ reach(+)
νj−1,νj

for 1 ≤ j ≤ n

Proof. The if-direction is obvious. For the other direction
take for c0 (resp. d0) the leftmost (resp. rightmost) occur-
rence of a configuration of minimal height along a path in
C(S) from the configuration c to the configuration d. ut

For all p, q ∈ Q and µ, ν ∈ Θ define a binary predicate

H(p, µ, q, ν) = {(a, b) ∈ A×A | (ap, bq) ∈ reachµ,ν}.

Lemma 5.3 The relation H(p, µ, q, ν) is effectively
FOREG-definable over the stack structure G.

Proof. We will construct effectively a finite automa-
ton B with state set Q × Θ and alphabet Σ1 such that
(ap, bq) ∈ reachµ,ν if and only if a

u
→G b for some

u ∈ L(B, (p, µ), (q, ν)), which proves the lemma. For this,
we will construct a finite sequence of automata Bi (i ≥ 0)
with state set Q × Θ and alphabet Σ1, which converges to
the automaton B. The finite state automaton B0 contains
the transition (p, µ)

α
→ (q, ν) if and only if τ(α) = (p, q)

and µ
α
→T ν for some α ∈ Σ1. Now assume that Bi is

already constructed and assume that

• in T there are transitions µ
β
→T µ′, (β ∈ Σ2) and

ν′
γ
→T ν (γ ∈ Σ3),

• τ(β) = (p, p′), τ(γ) = (q′, q), and

• there exist a ∈ pushβ , b ∈ popγ , and u ∈

L(Bi, (p
′, µ′), (q′, ν′)) such that a

u
→G b.

Note that the last point is decidable, since the FOREG-
theory of G is decidable. In this situation we add the ε-
transition (p, µ)

ε
→ (q, ν) to Bi and call the resulting au-

tomaton Bi+1. We repeat this process as long as we will
add new ε-transitions. Note that in each step the state set
is not changed. Let B be the resulting automaton. It is not
difficult to prove (ap, bq) ∈ reachµ,ν if and only if a

u
→G b,

for some u ∈ L(B, (p, µ), (q, ν)), which proves the lemma.
ut
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Define for all p, q ∈ Q and µ, ν ∈ Θ unary predicates
D(p, µ, q, ν), U(p, µ, q, ν) ⊆ A as follows:

a ∈ D(p, µ, q, ν) ⇔

∨

p′∈Q,µ′∈Θ,
γ∈Σ3

∃b ∈ popγ :

{
(a, b) ∈ H(p, µ, p′, µ′) ∧

τ(γ) = (p′, q) ∧ µ′ γ
→T ν

}

a ∈ U(p, µ, q, ν) ⇔

∨

p′∈Q,µ′∈Θ,
β∈Σ2

∃b ∈ pushβ :

{
(b, a) ∈ H(p′, µ′, q, ν) ∧

τ(β) = (p, p′) ∧ µ
β
→T µ′

}

By Lemma 5.3, the unary predicates D(p, µ, q, ν) and
U(p, µ, q, ν) are FOREG-definable in the stack structure G.
The next lemma follows directly from the definition of the
predicates D(p, µ, q, ν), H(p, µ, q, ν), and U(p, µ, q, ν).

Lemma 5.4 We have:

D(p, µ, q, ν) = {a ∈ A | ∃u ∈ A+ : (uap, uq) ∈ reach(−)
µ,ν }

U(p, µ, q, ν) = {a ∈ A | ∃u ∈ A+ : (up, uaq) ∈ reach(+)
µ,ν }

Note that in Lemma 5.4, one might replace the quantifier
∃u ∈ A+ by ∀u ∈ A+. Lemma 5.2 and Lemma 5.4 imply:

Lemma 5.5 We have (up, vq) ∈ reachµ,ν if and only if
there exist m,n ≥ 0, w ∈ A∗, ai ∈ A, pi ∈ Q,µi ∈ Θ
(0 ≤ i ≤ m), and bj ∈ A, qj ∈ Q, νj ∈ Θ (0 ≤ j ≤ m)
such that:

• µ = µm, ν = νn, p = pm, q = qn,

• u = wa0 · · · am, v = wb0 · · · bn,

• ai ∈ D(pi, µi, pi−1, µi−1) for all 1 ≤ i ≤ m,

• (a0, b0) ∈ H(p0, µ0, q0, ν0),

• bj ∈ U(qj−1, νj−1, qj , νj) for all 1 ≤ j ≤ n

Define the binary relations D(p, µ, q, ν)∗, U(p, µ, q, ν)∗ ⊆
A+ ×A+ as follows:

(u, v) ∈ D(p, µ, q, ν)∗ if and only if there exist m ≥ 0,
a1, . . . , am ∈ A, p0, . . . , pm ∈ Q, µ0, . . . , µm ∈ Θ with

• u = va1 · · · am,

• p = pm, q = p0, µ = µm, ν = µ0, and

• ai ∈ D(pi, µi, pi−1, µi−1) for 1 ≤ i ≤ m.

(u, v) ∈ U(p, µ, q, ν)∗ if and only if there exist n ≥ 0,
b1, . . . , bn ∈ A, q0, . . . , qn ∈ Q, ν0, . . . , νn ∈ Θ with

• v = ub1 · · · bn,

• p = q0, q = qn, µ = ν0, ν = νn, and

• bj ∈ U(qj−1, νj−1, qj , νj) for 1 ≤ j ≤ n.

These definitions and Lemma 5.5 imply:

Lemma 5.6 We have (up, vq) ∈ reachµ,ν if and only if
there exist u′, v′ ∈ A+, p′, q′ ∈ Q, µ′, ν′ ∈ Θ such that:

(u, u′) ∈ D(p, µ, p′, µ′)∗

(u′, v′) ∈ {(xa, xb) | x ∈ A∗, (a, b) ∈ H(p′, µ′, q′, ν′)}

(v′, v) ∈ U(q′, ν′, q, ν)∗

Now, let us consider the structure

A = (A ∪Q, (q)q∈Q,(D(p, µ, q, ν))p,q∈Q,µ,ν∈Θ,

(H(p, µ, q, ν))p,q∈Q,µ,ν∈Θ,

(U(p, µ, q, ν))p,q∈Q,µ,ν∈Θ).

Since each of its relations is FOREG-definable in the stack
structure G, and G has a decidable FOREG-theory, A has
a decidable first-order theory. Thus, by Thm. 4.10,

A∗
ba = ((A ∪Q)∗, ¹, (q̂)q∈Q,

( ̂D(p, µ, q, ν))p,q∈Q,µ,ν∈Θ,

( ̂H(p, µ, q, ν))p,q∈Q,µ,ν∈Θ,

( ̂U(p, µ, q, ν))p,q∈Q,µ,ν∈Θ)

has a decidable MSOch-theory. We finally show that the
structure B from (2), for which we have to show decid-
ability of the first-order theory, is MSOch-interpretable in
A∗

ba, which proves Thm. 5.1. Clearly, the universe A+Q

of B is first-order definable in A∗
ba using the prefix re-

lation ¹ and the unary relations q̂ = (A ∪ Q)∗q for
q ∈ Q. In order to define the relations reachµ,ν of B
it suffices by Lemma 5.6 to define the binary relations
D(p, µ, q, ν)∗, U(p, µ, q, ν)∗, {(xa, xb) | x ∈ A∗, (a, b) ∈
H(p, µ, q, ν)} ⊆ A+×A+ in A using MSOch. The relation
{(xa, xb) | x ∈ A∗, (a, b) ∈ H(p, µ, q, ν)} can be defined

as ̂H(p, µ, q, ν) ∩A+ ×A+; note that A+ is first-order de-
finable in A using the prefix relation ¹ and the relations q̂
for q ∈ Q. Finally, the MSOch-definitions of D(p, µ, q, ν)∗

and U(p, µ, q, ν)∗ follow Büchi’s technique for expressing
the existence of a successful run of an automaton on a finite
word in MSO. This completes the proof of Thm. 5.1.

6. Open problems

We have shown that the MSOch-theory (i.e., the frag-
ment of the full MSO-theory where set quantification is re-
stricted to chains) of the basic iteration A∗

ba of a structure
A can be reduced to the first-order theory of A. Using this
result, we have shown that the FOREG-theory of the con-
figuration graph C(S) of a pushdown system S over an infi-
nite stack structure A can be reduced to the FOREG-theory
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of A. We plan to investigate whether similar preservation
theorems can be shown also for temporal logics like CTL,
CTL∗, or the modal µ-calculus. Another interesting candi-
date for investigations of this kind is TC2 [26], i.e., first-
order logic extended by the transitive closure operator for
binary relations.
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[26] S. Wöhrle and W. Thomas. Model checking syn-
chronized products of infinite transition systems. In
LICS’04, pages 2–11. IEEE Computer Society Press,
2004.

10


