
Querying and Embedding Compressed Texts

Yury Lifshits1, Markus Lohrey2

1 Steklov Institut of Mathematics, St.Petersburg, Russia
2 Universiẗat Stuttgart, FMI, Germany

yura@logic.pdmi.ras.ru, lohrey@informatik.uni-stuttgart.de

Abstract. The computational complexity of two simple string problems on com-
pressed input strings is considered: the querying problem (What is the symbol at a
given position in a given input string?) and the embedding problem (Can the first
input string be embedded into the second input string?). Straight-line programs
are used for text compression. It is shown that the querying problem becomes
P-complete for compressed strings, while the embedding problem becomes hard
for the complexity classΘp

2
.

1 Introduction

During the last decade, the massive increase in the volume ofdata has motivated the
need for algorithms oncompressed data, like for instance compressed strings, trees, or
pictures. The general goal is to develop efficient algorithms that directly work on com-
pressed data without prior decompression, or to prove undergeneral assumptions from
complexity theory that such efficient algorithms do not exist. In this paper we concen-
trate on algorithms on compressed strings. We investigate two computational problems,
which can be trivially solved in linear time for uncompressed input strings: the query-
ing problem and the embedding problem. In the embedding problem we have given two
input stringsp (the pattern) andt (the text), and we ask whetherp can be embedded into
t, i.e.,p can be obtained by deleting some letters of the textt at arbitrary positions, see
Section 4 for a formal definition. In the querying problem theinput consists of a string
s, a positioni ∈ N, and a lettera, and we ask, whether thei-th symbol ofs is a.

For string compression, we choosestraight-line programs(SLPs), i.e., context-free
grammars that generate exactly one word. Straight-line programs turned out to be a very
flexible and mathematically clean compressed representation of strings. Several other
dictionary-based compressed representations, like for instance Lempel-Ziv (LZ) factor-
izations [24], can be converted in polynomial time into straight-line programs and vice
versa [18]. This implies that complexity results, which refer to classes above determinis-
tic polynomial time, can be transfered from SLP-encoded input strings to LZ-encoded
input strings. It turns out that the computational complexity of the querying problem
and the embedding problem becomes very different, when input strings are encoded via
SLPs: While for SLP-compressed strings the querying problem(also calledcompressed
querying problem) becomes complete for deterministic polynomial time (Thm.4), the
embedding problem (also calledfully compressed embedding problem; the term “fully”
is used because both, the pattern and the text are assumed to be compressed) becomes
hard for the classΘp

2 (Thm. 1). The latter class consists of all problems that can be

accepted by a deterministic polynomial time machine with access to an oracle fromNP

and such that furthermore all questions to the oracle are asked in parallel [23].Θp
2 is

located between the first and the second level of the polynomial time hierarchy; it con-
tainsNP andcoNP and is contained inΣp

2 ∩ Π
p
2 . We are currently not able to prove

a matching upper bound. The best upper bound for the fully compressed embedding
problem that we can prove isPSPACE (Prop. 1). A corollary of theΘp

2-hardness of
the fully compressed embedding problem isΘ

p
2-hardness of thelongest common subse-

quence problemand theshortest common supersequence problemon SLP-compressed
strings, even when both problems are restricted to two inputstrings. These problems
have many applications e.g. in computational biology [10].

The paper is organized as follows. After introducing the necessary concepts in
Sec. 2, we prove in Sec. 3, based on a reduction from the super increasing subset sum
problem [11],P-completeness of the compressed querying problem for a binary input
alphabet. For a variable input alphabet, we sharpen this result by showing that even for
RLZ-encoded strings the compressed querying problem isP-complete, which solves
an open problem from [7]. RLZ-encodings (restricted Lempel-Ziv encodings) can be
seen as a restricted form of straight-line programs. In Sec.4 we show that the fully
compressed embedding problem isΘ

p
2-hard. The proof is divided into two main parts.

First we proveNP-hardness by a reduction from the subset sum problem (Sec. 4.1).
Second, we show how to simulate boolean operations via fullycompressed embedding
(Sec. 4.2). By taking together these two parts we can deduce hardness forΘp

2 (Sec. 4.3).

Let us briefly discuss related work. Research on pattern matching problems for
dictionary-based compressed strings started with the seminal paper [1]. In [17], a poly-
nomial time algorithm for testing whether two SLPs represent the same text was pre-
sented. The technique of [17] was extended in [8, 14] in orderto show that thefully
compressed pattern matching problemcan be solved in polynomial time as well. The
fully compressed pattern matching problem is the compressed version of the classi-
cal pattern matching problem: for two given SLPsP andT we ask, whether the text
represented byT can be written asupv, wherep is the text represented by the SLP
P . Note the difference between thefully compressed pattern matching problemandthe
fully compressed embedding problemstudied in this paper: In the latter problem we also
search for a compressed pattern in a compressed text, but we allow that the pattern oc-
curs scattered, i.e., with gaps, in the text. This more liberal notion of pattern-occurrence
makes the application of periodicity properties of words, which are crucial in [8, 14,
17], impossible, and is in some sense the reason for the higher complexity of the fully
compressed embedding problem. A similar complexity jump was observed when mov-
ing from ordinary (1-dimensional) to 2-dimensional texts,i.e., rectangular pictures: In
this framework, fully compressed pattern matching becomesΣP

2 -complete [3].

The computational problems mentioned so far can be all formulated as particular
compressed membership problems, where we ask whether a given compressed text be-
longs to some formal language, which may either be fixed or given in the input, e.g.,
in form of an automaton or a grammar. Precise complexity results for these problems
were obtained in [2, 13] for regular languages and [12] for context-free languages.

Whereas it isNP-complete to compute (and even hard to approximate up to a con-
stant factor) a minimal SLP that generates a given input string [4], several approaches

for generating a small SLP that produces a given input stringwere proposed and ana-
lyzed in the literature, see e.g. [4, 21].

We refer to [7, 15, 18–20, 22] for a more detailed discussion of algorithmic problems
on compressed strings.

2 Preliminaries

We assume that the reader has some basic background in complexity theory [16]. LetΣ
be a finite alphabet. Theempty wordoverΣ is denoted byε. For a words = a1 · · · an ∈
Σ∗ (ai ∈ Σ) let |s| = n, |s|a = |{i | ai = a}| (for a ∈ Σ), s[i] = ai (for 1 ≤ i ≤ n),
ands[i, j] = aiai+1 · · · aj (for 1 ≤ i ≤ j ≤ n). If i > j we sets[i, j] = ε.

Following [18], a straight-line program (SLP) over the terminal alphabetΣ is
a context-free grammarG with ordered non-terminal symbolsX1, . . . ,Xm (Xm is
the starting symbol) such that there is exactly one production for each symbol: either
Xi → a, wherea ∈ Σ is a terminal, orXi → XjXk for somej, k < i. The lan-
guage generated by the SLPG contains exactly one word that is denoted byeval(G).
More generally, every nonterminalXi produces exactly one word that is denoted by
evalG(Xi). We omit the indexG if the underlying SLP is clear from the context. The
size ofG is |G| = m.

We may allow in SLPs more general productions of the formXi → w with w ∈
(Σ ∪ {X1, . . . ,Xi−1})

∗. We may even allow exponential expressions of the formXk
j

for j < i and a binary coded integerk ∈ N in the right-hand sidew. Such a production
can be replaced byO(log(k)) many ordinary productions.

3 Querying the i-th symbol

In this section, we study the following computational problemCompressed Querying:
INPUT: SLPG (over the terminal alphabetΣ), positioni ∈ N, anda ∈ Σ

QUESTION:eval(G)[i] = a?
We prove thatCompressed Querying is P-complete. This means that unlessP = NC,
whereNC is the class of all problems that can be solved in polylogarithmic time using
polynomially many processors, there does not exist an efficient parallel algorithm for
Compressed Querying, see [9] for background onP-completeness. All reductions in
this section areNC-reductions, i.e., they can be computed in polylogarithmictime with
only polynomially many processors.

Theorem 1. Compressed Querying is P-complete. Hardness forP even holds for a
binary terminal alphabet.

Proof. Membership inP is easy to see: first compute for every non-terminalX of the
input SLP the lengthℓX of the generated stringeval(X). Now, if we have a production
X → Y Z and we want to determineeval(X)[i] then we first check whetheri ≤ ℓY .
In this case we have to findeval(Y)[i]. On the other hand, ifi > ℓY , then we have to
determineeval(Z)[i − ℓX]. This simple idea leads to a polynomial time algorithm.

We proveP-hardness by anNC-reduction from theP-complete problemSuper In-
creasing Subset Sum [11]:

INPUT: Integersw1, . . . , wn, t in binary form such thatwi >
∑i−1

j=1 wj for all
1 ≤ i ≤ n (in particularw1 > 0).

QUESTION: Do there existx1, . . . , xn ∈ {0, 1} such that
∑n

i=1 xi · wi = t?
Thus, letw1, . . . , wn, t be integers such thatwi >

∑i−1
j=1 wj . Let g1, . . . , gn ∈ {0, 1}∗

be defined as follows, wheresj = w1 + · · · + wj for 1 ≤ j ≤ n:

g1 = 10w1−11 gj = gj−10
wj−sj−1−1gj−1 for 2 ≤ j ≤ n

It is straightforward to construct from the instance(w1, . . . , wn, t) in NC an SLP that
generates the stringgn. Note thatwj > sj−1 and hencewj − sj−1 − 1 ≥ 0. Moreover,
we claim that|gj | = sj +1. This is certainly true forj = 1 sinces1 = w1. Forj ≥ 2 we
obtain inductively|gj | = 2|gj−1|+wj−sj−1−1 = 2sj−1+2+wj−sj−1−1 = sj +1.

We claim thatgn[t + 1] = 1 if and only if there existx1, . . . , xn ∈ {0, 1} such that
∑n

i=1 xi · wi = t, which proves the theorem. For this, we prove by induction onj that
for everyp ≥ 0: gj [p + 1] = 1 if and only if ∃x1, . . . , xj ∈ {0, 1} :

∑j

i=1 xi · wi = p.
If j = 1, theng1[p + 1] = (10w1−11)[p + 1] = 1 if and only if p = 0 or p = w1,
which proves the induction base. Now assume thatj ≥ 2. Thengj [p + 1] = 1 if
and only if (gj−10

wj−sj−1−1gj−1)[p + 1] = 1 if and only if (gj−1[p + 1] = 1 or
gj−1[p + 1 − |gj−1| − wj + sj−1 + 1] = 1) if and only if (gj−1[p + 1] = 1 or
gj−1[p+1−sj−1−1−wj+sj−1+1] = gj−1[p+1−wj] = 1) (since|gj−1| = sj−1+1).
By induction, this is true if and only if

∃x1, . . . , xj−1 ∈ {0, 1}

{
j−1
∑

i=1

xi · wi = p or
j−1
∑

i=1

xi · wi = p − wj

}

.

But this is equivalent to∃x1, . . . , xj ∈ {0, 1} :
∑j

i=1 xi · wi = p. ⊓⊔

Note that in Thm. 1,P-hardness already holds for a binary alphabet. If we allow the ter-
minal alphabet to be part of the input, then we can proveP-hardness even for a restricted
form of SLPs, so calledrestricted Lempel-Ziv encodings, briefly RLZ-encodings [7].
For a given stringw ∈ Σ+, the RLZ-factorizationof w is the unique factorization
w = f1f2 · · · fn such that for everyi ≥ 1, fi is either the longest non-empty prefix of
fifi+1 · · · fn such that there exists1 ≤ j ≤ k < i with fi = fj · · · fk, or (if such a
prefix does not exist)fi is the first symbol offifi+1 · · · fn. In this situation, theRLZ-
encodingof w, briefly RLZ(w) is the sequencec1c2 · · · cn, whereci = fi if fi ∈ Σ

or ci = [j, k] if fi 6∈ Σ andfi = fj · · · fk. Note that from RLZ(w) one can easily
construct an SLP generatingw.

Example 1.Let w = abaababaabaababaababa. Then the RLZ-factorization ofw is
a |b |a |aba |baaba |ababaaba |ba and RLZ(w) = aba[1, 3][2, 4][4, 5][2, 3].

The next theorem solves an open problem from [7], where a corresponding result for
LZ-encoded input strings (see [7] for the definition) was shown. It should be noted
that there are polynomial time transformations between RLZ- and LZ-encodings [7,
Lemma 1], but by the results from [7] there cannot be anNC-transformation from LZ-
encodings to RLZ-encodings unlessP = NC.

Theorem 2. The following problem isP-complete:
INPUT: An alphabetΣ, a stringw ∈ Σ∗ given by its RLZ-encoding, a position

i ∈ N, anda ∈ Σ

QUESTION:w[i] = a?

Proof. Membership inP follows from Thm. 1. ForP-hardness we use almost the same
construction as in the proof of Thm. 1. For a given instance(w1, . . . , wn, t) of Super
Increasing Subset Sum we define stringsg1, . . . , gn ∈ {1, $1, . . . , $n}

∗ as follows,
wheresj = w1 + · · · + wj for 1 ≤ j ≤ n:

g1 = 1$w1−1
1 1 gj = gj−1$

wj−sj−1−1
j gj−1 for 2 ≤ j ≤ n

The proof of Thm. 1 shows thatgn[t + 1] = 1 if and only if there existx1, . . . , xn ∈
{0, 1} such that

∑n

i=1 xi ·wi = t. It remains to prove that RLZ(gn) can be constructed
in NC from (w1, . . . , wn, t). In the following letℓ(i) for i ∈ N be the number of factors
in the RLZ-factorization ofai. One can show thatℓ(i) ∈ O(log(i)) and RLZ(ai) can
be calculated inNC from the binary encoding ofi. Now we determine the numberλi of
factors of the RLZ-factorization of the stringgi. We haveλ1 = 2+ ℓ(w1 − 1) andλi =

λi−1+ℓ(wi−si−1−1)+1 for i > 1. Thus,λi = (i+1)+
∑i

k=1 ℓ(wk−sk−1−1). Also
the numbersλi (1 ≤ i ≤ n) can be calculated inNC using the prefix sum algorithm.
Now we can set in parallel for all1 ≤ i ≤ n the factor from positionλi−1 + 1 to λi of
RLZ(gn) (whereλ0 = 0) to RLZ($

wi−si−1−1
i)+λi−1 [1, λi−1], where RLZ(w)+j is the

same as RLZ(w) but wherej is added to all numbers. ⊓⊔

4 Complexity of Embedding

A stringp = a1 · · · am can beembeddedinto a stringt = b1 · · · bn (ai, bj ∈ Σ), briefly
p →֒ t, if there exist positions1 ≤ i1 < i2 < · · · < im ≤ n such thatbik

= ak for
1 ≤ k ≤ m. We also say thatp is asubsequenceof t, see the following diagram:

a1 a2 a3 · · · am−1 am

· · · a1 · · · a2 · · · a3 · · · am−1 · · · am · · ·

In this section, we study the complexity of the following problem Fully Compressed
Embedding, for shortEmbedding:

INPUT: SLPsP andT

QUESTION:eval(P) →֒ eval(T)?
The following upper bound forEmbedding is easy to prove:

Proposition 1. Embedding belongs toPSPACE.

Proof. The straightforward greedy algorithm that solves the embedding problem for un-
compressed strings in linear time results in aPSPACE-algorithm for SLP-compressed
strings. The crucial observation is that a position in a string, which is represented by an
SLP, can be stored in polynomial space with respect to the size of the SLP. ⊓⊔

A simple greedy algorithm for checkingeval(P) →֒ eval(T) can be easily imple-
mented within the time bound|eval(P)| · |T |O(1) ≤ 2O(|P |) · |T |O(1). This shows in
particular thatEmbedding is fixed parameter tractable in the sense of [5], when the
size of the pattern-SLP is chosen as the parameter (which is reasonable, because in
most pattern matching applications the pattern is much smaller than the text).

Our main result states thatEmbedding is hard for the complexity classΘp
2 . In

Sec. 4.1, we proveNP-hardness. Then, in Sec. 4.2 we show how to simulate boolean
operations withEmbedding. From this, we deduce hardness forΘ

p
2 in Sec. 4.3.

4.1 NP-hardness of Embedding

Let us recall the well-knownNP-complete problemSubset Sum (see [6]):
INPUT: Integersw1, . . . , wn, t in binary form
QUESTION: Do there existx1, . . . , xn ∈ {0, 1} with

∑n

i=1 xi · wi = t?

Theorem 3. Embedding is NP-hard.

Proof. We prove the theorem by a polynomial time reduction fromSubset Sum to
Embedding. Let t, w = (w1, . . . , wn) be input data forSubset Sum. W.l.o.g. assume
thatn ≥ 2. We are going to construct SLPsG andH such that there exists a subset of
{w1, . . . , wn} with sum equal tot if and only if eval(G) →֒ eval(H).

We begin with some notation. Lets = w1 + · · ·+wn andN = 2ns. We can assume
that t < s. Let x ∈ {0, 1, . . . , 2n − 1} be an integer. Withxi (1 ≤ i ≤ n) we denote
thei-th bit in the binary representation ofx, wherex1 is the least significant bit. Thus,
x =

∑n

i=1 xi2
i−1. We definex◦w =

∑n

i=1 xiwi. Hence,x◦w is the sum of the subset
of {w1, . . . , wn} encoded by the integerx. Hence,t, w is a positive instance ofSubset
Sum if and only if ∃x ∈ {0, . . . , 2n − 1} : x ◦w = t. We now define stringsg andh as
follows:

h1 =

2n−1∏

x=0

(10s) = (10s)2
n

h2 = 02N h3 =

2n−1∏

x=0

(0x◦w10s−x◦w)

h4 = 0t+1 h0 = h1h2h3h4 h = h5N
0

g0 = 103N+t10N+1 g = g5N−1
0

We use the symbol
∏

to denote the concatenation of the corresponding words per-
formed in the orderx = 0, . . . , 2n − 1.

We first claim that the stringsg andh can be generated by SLPs of polynomial size
with respect to the size of the inputt, w. Note that with only one exception, namely the
definition ofh3, only a constant number of concatenations and integer exponents with
polynomially many bits are used in the definition ofg andh. These constructions can
be directly realized by SLPs. Finally, a construction of a polynomial size SLP forh3

was presented in [12].
Now we prove thatg →֒ h if and only if ∃x ∈ {0, . . . , 2n − 1} : x ◦ w = t.

First assume that there isx ∈ {0, . . . , 2n − 1} such thatx ◦ w = t. Consider the prefix
h1h2h3h4h1 of h. We can embedg0 = 103N+t10N+1 intoh1h2h3h4h1: map the initial

1 of g0 to thex-th block10s of h1. Sincex◦w = t, the number of 0’s inh1h2h3 between
the1 in thex-th block10s of h1 and thex-th block0x◦w10s−x◦w = 0t10s−t of h3 is
preciselyN − (x − 1)s + 2N + (x − 1)s + t = 3N + t, see the following diagram:

10s · · · 10s · · · 10s

x-th block

0 · · · 0 · · · 0t10s−t · · ·

x-th block

h1
︷ ︸︸ ︷

h2
︷ ︸︸ ︷

h3
︷ ︸︸ ︷

︸ ︷︷ ︸

N−(x−1)s zeros

︸ ︷︷ ︸

2N zeros
︸ ︷︷ ︸

(x−1)s+t zeros

To these3N + t many 0’s we map the first3N + t many 0’s ofg0. Then the second
1 of g0 is mapped to the1 in the x-th block 0t10s−t of h3. The nextN + 1 many
0’s following this1 are used for embedding the remainingN + 1 many 0’s ofg0. The
crucial point is that after this embedding, we again arrive at the1 in thex-th block10s

of h1, see the following diagram:

· · · 0t10s−t · · ·

x-th block

0 · · · 0 10s · · · 10s · · · 10s

x-th block

h3
︷ ︸︸ ︷

h4
︷ ︸︸ ︷

h1
︷ ︸︸ ︷

︸ ︷︷ ︸

N−(x−1)s−t
zeros

︸ ︷︷ ︸

t+1
zeros

︸ ︷︷ ︸

(x−1)s
zeros

This observation shows thatgk
0 can be embedded intohk+1

0 = (h1h2h3h4)
k+1 for every

k ≥ 1. In particularg = g5N−1
0 →֒ h5N

0 = h.
Next, we prove the reverse direction. Assume thatg →֒ h. We have to show that

there isx ∈ {0, . . . , 2n − 1} such thatx ◦ w = t. In order to deduce a contradiction,
assume thatx ◦ w 6= t for all x ∈ {0, . . . , 2n − 1}. It turns out that not every 0 in
h can be the image of a 0 fromg under our embeddingg →֒ h. Let us estimate the
total number of such unused 0’s. Our embeddingg →֒ h consists of5N − 1 disjoint
embeddings ofg0 into h. There are two 1’s ing0 and there are exactly3N + t many
0’s between them. We claim that there is no pair of two 1’s withexactly3N + t many
0’s between them inh. In order to prove this, we consider two 1’s inh and make a case
distinction on the position of the first 1. First assume that the left 1 belongs toh1. More
precisely, assume that the left 1 is the 1 in they-th block10s of h1. By reading exactly
3N + t many 0’s inh, we arrive at positiont+1 (if t < y ◦w) or t+2 (if t > y ◦w) in
they-th block ofh3; note thatt < s. But sincey ◦ w 6= t, this position cannot contain
a 1. This proves the case that the left 1 belongs toh1. The following diagram visualizes
the situation (where we assume thatt > y ◦ w):

10s · · · 10s · · · 10s

y-th block

0 · · · 0 · · · 0y◦w10s−y◦w · · ·

y-th block

h1
︷ ︸︸ ︷

h2
︷ ︸︸ ︷

h3
︷ ︸︸ ︷

︸ ︷︷ ︸

N−(y−1)s zeros

︸ ︷︷ ︸

2N zeros
︸ ︷︷ ︸

(y−1)s+t zeros
︸ ︷︷ ︸

3N+t zeros

In the second case, the left 1 in our pair is situated inh3. Then, by reading exactly
3N + t many 0’s inh, we end up inh2, which does not contain 1’s at all:

· · · 0 · · · 010 · · · 0 · · · 0 · · · 0

h3
︷ ︸︸ ︷

h4h1
︷ ︸︸ ︷

h2
︷ ︸︸ ︷

︸ ︷︷ ︸

N zeros
︸ ︷︷ ︸

N+t+1 zeros
︸ ︷︷ ︸

2N zeros

We have now shown that for each embedding ofg0 in h between the images of the two
1’s in g0, there must be at least3N + t + 1 many 0’s inh. Thus, for every embedding
of g0 = 103N+t10N+1 in h we need at least3N + t + 1 + N + 1 = 4N + t + 2 many
0’s in h. Sinceg = g5N−1

0 , we need at least

(4N + t + 2) · (5N − 1) = 5N · (4N + t + 1) + (N − t − 2) > 5N · (4N + t + 1)

many 0’s inh. For the last inequality note thatN = s · 2n ≥ 4s > s + 2 > t + 2.
We obtain a contradiction, because from the construction ofh, we see thath contains
precisely5N · (4N + t + 1) many 0’s. ⊓⊔

4.2 Simulating boolean operations

Proposition 2. For SLPsG and H over a terminal alphabetΣ, |Σ| ≥ 1, we can
construct in polynomial time SLPsG′ andH ′ over the terminal alphabetΣ such that

eval(G) →֒ eval(H) ⇔ eval(G′) 6 →֒ eval(H ′). (1)

Proof. Let eval(G) = g1 · · · gk and eval(H) = h1 · · ·hm. For a ∈ Σ let Xa =
(a1 · · · an)m+1, where{a1, . . . , an} = Σ \ {a} (the order onΣ \ {a} is arbitrary
here; ifn = 0, thenXa = ε). Let a ∈ Σ be arbitrary and letG′ andH ′ be SLPs with

eval(G′) = eval(H)a = h1 · · ·hma and eval(H ′) = Xg1
g1 · · ·Xgk

gk.

These SLPs can be constructed in polynomial time fromG andH. ForG′ this is clear.
For H ′ we have to replace every terminal symbola in G by a new nonterminalA
and add the ruleA → Xaa. It remains to show (1). First assume thateval(G) 6 →֒
eval(H). Then we can writeeval(H) = R1g1 · · ·RlglRl+1, wherel < k and for
1 ≤ i ≤ l + 1, the wordRi does not contain the lettergi. Since|Ri| ≤ m, for every
1 ≤ i ≤ l + 1 we haveRi →֒ Xgi

. Thus, we can embed the prefixeval(H) =
R1g1 · · ·RlglRl+1 of eval(G′) into the prefixXg1

g1 · · ·Xgl
glXgl+1

of eval(H ′). The
final lettera of eval(G′) can be either also mapped toXgl+1

(if a 6= gl+1; here it is
important that|Xgl+1

| > m so thatRl+1 does not completely occupyXgl+1
) or it can

be mapped togl+1 (if a = gl+1):

R1 g1 R2 g2 · · · Rl gl Rl+1 a

Xg1
g1 Xg2

g2 · · · Xgl
gl Xgl+1

gl+1 · · ·

Now assume thateval(G) →֒ eval(H). Then we can writeeval(H) = R1g1 · · ·RkgkR,
where for1 ≤ i ≤ k, the wordRi does not contain the lettergi. We claim that

∀1 ≤ i ≤ k : R1g1 · · ·Rigi 6 →֒ Xg1
g1 · · ·Xgi−1

gi−1Xgi
. (2)

Our proof goes by induction oni. In the casei = 1 this follows, sinceg1 does not occur
in Xg1

. For the induction step assume that (2) is true for somei ≥ 1 and that moreover

R1g1 · · ·RigiRi+1gi+1 →֒ Xg1
g1 · · ·Xgi−1

gi−1Xgi
giXgi+1

. (3)

Recall that the last symbolgi+1 of R1g1 · · ·Ri+1gi+1 does not occur in the suffixXgi+1

of Xg1
g1 · · ·Xgi

giXgi+1
. Thus, (3) implies that alreadyR1g1 · · ·RigiRi+1gi+1 →֒

Xg1
g1 · · ·Xgi−1

gi−1Xgi
gi and henceR1g1 · · ·RigiRi+1 →֒ Xg1

g1 · · ·Xgi−1
gi−1Xgi

.
But this contradicts (2).

For i = k, (2) implies R1g1 · · ·Rkgk 6 →֒ Xg1
g1 · · ·Xgk−1

gk−1Xgk
. But then

eval(G′) = R1g1 · · ·RkgkRa 6 →֒ Xg1
g1 · · ·Xgk−1

gk−1Xgk
gk = eval(H ′). ⊓⊔

Thm. 3 and Prop. 2 immediately imply thatEmbedding is alsocoNP-hard.

Proposition 3. For SLPsG1,H1, G2,H2 over a terminal alphabetΣ, |Σ| ≥ 2, we can
construct in polynomial time SLPsG, H over the terminal alphabetΣ such that

(eval(G1) →֒ eval(H1) and eval(G2) →֒ eval(H2)) ⇔ eval(G) →֒ eval(H).

Proof. W.l.o.g. assume thatG1 andG2 (resp.H1 andH2) have disjoint sets of non-
terminals. LetSi (resp.Ti) be the start non-terminal ofGi (resp.Hi). Let N = 1 +
max{|eval(H1)|, |eval(H2)|}. ThenG (resp.H) contains all productions ofG1 and
G2 (resp.H1 andH2) and the additional productionS → S11

N01NS2 (resp.T →
T11

N01NT2), where0, 1 ∈ Σ. Here,S (resp.T) is the start non-terminal ofG (resp.
H). Thus,

eval(G) = eval(G1) 1N 0 1N eval(G2) and

eval(H) = eval(H1) 1N 0 1N eval(H2).

Clearly, ifeval(G1) →֒ eval(H1) andeval(G2) →֒ eval(H2), then we haveeval(G) →֒
eval(H). For the other direction note that ifeval(G1)1

N01Neval(G2) can be embedded
into eval(H1)1

N01Neval(H2), then by the choice ofN , the 0 at position|eval(G1)|+
N + 1 in eval(G1)1

N01Neval(G2) can neither be mapped to the prefixeval(H1) nor
to the suffixeval(H2) of eval(H). Thus, this 0 has to be mapped to the 0 at position
|eval(H1)| + N + 1 in eval(H1)1

N01Neval(H2). This implies that botheval(G1) →֒
eval(H1) andeval(G2) →֒ eval(H2). ⊓⊔

Proposition 4. For SLPsG1,H1, G2,H2 over a terminal alphabetΣ, |Σ| ≥ 2, we can
construct in polynomial time SLPsG, H over the terminal alphabetΣ such that

(eval(G1) →֒ eval(H1) or eval(G2) →֒ eval(H2)) ⇔ eval(G) →֒ eval(H).

Proof. W.l.o.g. assume thatG1, G2,H1, andH2 have pairwise disjoint sets of non-
terminals. LetSi (resp.Ti) be the start non-terminal ofGi (resp.Hi). Let N = 1 +
|eval(G1)| + |eval(G2)|. ThenG contains all productions ofG1 andG2 and the addi-
tional productionS → S101N0S2. The SLPH contains all productions ofG1, H1, G2,
H2 and the additional productionT → T101NS10S21

N0T2. Thus, we have

eval(G) = eval(G1) 0 1N 0 eval(G2) and

eval(H) = eval(H1) 0 1N eval(G1) 0 eval(G2) 1N 0 eval(H2).

Clearly, if eval(G1) →֒ eval(H1) or eval(G2) →֒ eval(H2), theneval(G) →֒ eval(H).
For the other direction assume thateval(G) = eval(G1) 0 1N 0 eval(G2) can be em-
bedded intoeval(H) = eval(H1) 0 1N eval(G1) 0 eval(G2) 1N 0 eval(H2). Consider
the 1N -block of eval(G). If a 1 from this block is mapped to the prefixeval(H1) of
eval(H), theneval(G1) →֒ eval(H1). If a 1 from the1N -block of eval(G) is mapped
to the first1N -block ofeval(H), then the 0 at position|eval(G1)|+1 in eval(G) cannot
be mapped to the right of the 0 at position|eval(H1)| + 1 in eval(H). But then again
the prefixeval(G1) of eval(G) is embedded into the prefixeval(H1) of eval(H). Com-
pletely analogously it follows that if a 1 from the1N -block ofeval(G) is mapped to the
suffix eval(H2) of eval(H) or to the second1N -block of eval(H), theneval(G2) →֒
eval(H2). The only remaining case, namely that every 1 in the1N -block of eval(G) is
mapped intoeval(G1) 0 eval(G2) cannot occur, sinceN > |eval(G1)eval(G2)|. ⊓⊔

4.3 Hardness for Θ
p

2

Recall thatΘp
2 is the class of all problems that can be accepted by a deterministic poly-

nomial time machine with access to an oracle fromNP and such that furthermore all
questions to the oracle are asked in parallel [23].

Proposition 5. If A ⊆ {0, 1}∗ is NP-complete, then the following problem isΘp
2-

complete:
INPUT: A boolean circuitC (i.e., a circuit with AND-gates, OR-gates, NOT-gates,

and input gates), where every input gateg is labeled with a wordw(g) ∈ {0, 1}∗.
QUESTION: DoesC evaluate to true when every input gateg evaluates to true

(resp. false) ifw(g) ∈ A (resp.w(g) 6∈ A)?

Proof. For membership inΘp
2 note that we can evaluate all input gates ofC in paral-

lel by using the languageA as an oracle. Then, the whole circuit can be evaluated in
polynomial time. Hardness forΘp

2 follows from a result from [23]: It isΘp
2-complete

to decide for a given list of stringsw1, w2, . . . , wn ∈ {0, 1}∗, whether the number
|{i | wi ∈ A}| is odd. By taking a boolean circuit for parity, this problem can be easily
encoded into a boolean circuit withA-instances at input gates. ⊓⊔

Theorem 4. Even for SLPs over a binary terminal alphabet,Embedding is Θ
p
2-hard.

Proof. Let C be a circuit with input gates labeled with instances of theNP-complete
Subset Sum problem. By the usual doubling argument, we can assume that negation
gates only occur directly above input gates. We first define inductively for every gatec
stringsu(c) andv(c) and then argue that (i)c evaluates to true if and only ifu(c) →֒
v(c) and (ii)u(c) andv(c) can be generated by “small” SLPs. Ifc is an unnegated input
gate that is labeled with theSubset Sum instanceI thenu(c) = g andv(c) = h, where
g andh are the two strings that are constructed fromI in the proof of Thm. 3. Ifc is a
negated input gate that is labeled with theSubset Sum instanceI, then again we first
construct fromI the wordsg andh as described in the proof of Thm. 3. Then we apply
the construction from the proof of Prop. 2 tog andh and assign the resulting strings to

u(c) andv(c), respectively. For AND- and OR-gates we use the constructions from the
proofs of Prop. 3 and 4, resp.: Ifc is an AND-gate with inputsc1 andc2, then

u(c) = u(c1) 1N 0 1N u(c2) and v(c) = v(c1) 1N 0 1N v(c2), (4)

whereN = 1 + max{|v(c1)|, |v(c2)|}. If c is an OR-gate with inputsc1 andc2, then

u(c) = u(c1) 0 1N 0u(c2) and v(c) = v(c1) 0 1N u(c1) 0u(c2) 1N 0 v(c2), (5)

whereN = 1 + |u(c1)| + |u(c2)|. From Thm. 3 and Prop. 2–4 it follows immediately
thatC evaluates to true if and only ifu(o) →֒ v(o), whereo is the output gate ofC.

It remains to argue that for every gatec, the stringsu(c) andv(c) can be generated
by SLPs of size polynomially bounded in the size of the circuit C (which is the number
of gates plus the size of allSubset Sum instances at the input gates ofC). Note that if
we definen(c) = max{|u(c)|, |v(c)|} then we haven(c) ≤ 8 ·max{n(c1), n(c2)}+ 5
in casec is an AND- or OR-gate with inputsc1 andc2.3 It follows thatn(c) is bounded
exponentially in the size of the circuitC. Moreover, we can calculate the binary repre-
sentations of the lengths|u(c)| and|v(c)| for every gatec in polynomial time. Thus, we
can construct SLPs of polynomial size for the factors1N in (4) and (5). This implies
that for every gatec, u(c) andv(c) can be generated by SLPs of polynomial size.⊓⊔

Let us close this paper with a corollary of Thm. 4. In the problem Longest Common
Subsequence (LCS) (resp.Shortest Common Supersequence (SCS)), one asks for
a finite setR of strings andn ∈ N whether there is a stringw with |w| ≥ n and
∀v ∈ R : w →֒ v (resp.|w| ≤ n and∀v ∈ R : v →֒ w). These problems are known to
beNP-complete, but for|R| = 2 they can be solved in polynomial time (see [6]). For
SLP-encoded input strings,LCS andSCS can be both solved inPSPACE.

Corollary 1. The problemsLCS andSCS for SLP-encoded input strings areΘp
2-hard,

even if|R| = 2 for the input setR.

Proof. Foru, v ∈ Σ∗ we haveu →֒ v if and only if ({u, v}, |u|) (resp.({u, v}, |v|)) is
a true instance ofLCS (resp.SCS). Hence, the corollary follows from Thm. 4. ⊓⊔

5 Open problems

The main open problem that remains from this paper concerns the precise complexity of
Embedding. Our results leave a gap fromΘp

2 to PSPACE. In Thm. 2 (P-completeness
of querying RLZ-encoded input strings) it is open, whether the underlying alphabet can
be fixed to, e.g., a binary alphabet.

Acknowledgments This work was done during a visit of the first author at Univer-
sity of Stuttgart, Germany, which was supported by the DFG project GELO. The first
author was also supported by grants from the projects INTAS 04-77-7173 and NSh-
8464.2006.1.

3 Such a bound would not hold for a NOT-gate, since one application of the construction for
Prop. 2 may lead to a quadratic blow-up in the size of the generated strings.Therefore we have
to assume that NOT-gates only appear at input gates.

References

1. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in Z-compressed
files. J. Comput. Syst. Sci, 52(2):299–307, 1996.

2. M. Beaudry, P. McKenzie, P. Péladeau, and D. Th́erien. Finite monoids: From word to circuit
evaluation.SIAM J. Comput., 26(1):138–152, 1997.

3. P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On the complexity
of pattern matching for highly compressed two-dimensional texts.J. Comput. Syst. Sci.,
65(2):332–350, 2002.

4. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem.IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005.

5. R. G. Downey and M. R. Fellows.Parametrized Complexity. Springer, 1999.
6. M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of

NP–completeness. Freeman, 1979.
7. L. Gasieniec, A. Gibbons, and W. Rytter. Efficiency of fast parallelpattern searching in

highly compressed texts. InProc. MFCS’99, LNCS 1672, pages 48–58. Springer, 1999.
8. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for Lempel-

Ziv encoding (extended abstract). InProc. SWAT 1996, LNCS 1097, pages 392–403.
Springer, 1996.

9. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo.Limits to Parallel Computation:P -
Completeness Theory. Oxford Univ. Press, 1995.

10. D. Gushfield.Algorithms on Strings, Trees, and Sequences. Cambridge Univ. Press, 1999.
11. H. J. Karloff and W. L. Ruzzo. The iterated mod problem.Inf. Comput., 80(3):193–204,

1989.
12. M. Lohrey. Word problems and membership problems on compressed words. SIAM J.

Comput., 35(5):1210 – 1240, 2006.
13. N. Markey and P. Schnoebelen. A PTIME-complete matching problem for SLP-compressed

words. Inf. Process. Lett., 90(1):3–6, 2004.
14. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algorithm for

strings in terms of straight-line programs. InProc. CPM 97, LNCS 1264, pages 1–11.
Springer, 1997.

15. G. Navarro. Regular expression searching on compressed text.J. Discrete Algorithms, 1(5–
6):423–443, 2003.

16. C. H. Papadimitriou.Computational Complexity. Addison Wesley, 1994.
17. W. Plandowski. Testing equivalence of morphisms on context-freelanguages. InProc.

ESA’94, LNCS 855, pages 460–470. Springer, 1994.
18. W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed

words. InJewels are Forever, Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pages 262–272. Springer, 1999.

19. W. Rytter. Algorithms on compressed strings and arrays. InProc. SOFSEM’99, LNCS 1725,
pages 48–65. Springer, 1999.

20. W. Rytter. Compressed and fully compressed pattern matching in oneand two dimensions.
Proceedings of the IEEE, 88(11):1769–1778, 2000.

21. W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression.Theor. Comput. Sci., 302(1–3):211–222, 2003.

22. W. Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit input.
In Proc. ICALP 2004, LNCS 3142, pages 15–27. Springer, 2004.

23. K. W. Wagner. More complicated questions about maxima and minima,and some closures
of NP. Theor. Comput. Sci., 51:53–80, 1987.

24. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.IEEE Trans.
Inf. Theory, 23(3):337–343, 1977.

