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Abstract

The complexity of various membership problems for tree automata on compressed
trees is analyzed. Two compressed representations are considered: dags, which allow
to share identical subtrees in a tree, and straight-line context-free tree grammars,
which moreover allow to share identical intermediate parts in a tree. Several com-
pleteness results for the classes NL, P, and PSPACE are obtained. Finally, the
complexity of the evaluation problem for (structural) XPath queries on trees that
are compressed via straight-line context-free tree grammars is investigated.
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1 Introduction

During the last decade, the massive increase in the volume of data has mo-
tivated the investigation of algorithms on compressed data, like for instance
compressed strings, trees, and pictures. The general goal is to develop algo-
rithms that directly work on compressed data without prior decompression.
Considerable amount of work has been done concerning algorithms on com-
pressed strings, see e.g. [6,17,27]. In this paper we investigate the computa-
tional complexity of algorithmic problems on compressed trees. Trees serve
as fundamental data structure in many fields of computer science, e.g. term
rewriting, model checking, XML, etc. In each of these domains, compressed
trees in form of dags (directed acyclic graphs), which allow to share identi-
cal subtrees in a tree, are used as a key for obtaining efficient algorithms,
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see for instance [26] (term graph rewriting), [3] (model checking with BDDs),
and [4,11,21] (querying compressed XML documents). Recently, straight-line
context-free tree grammars (SL cf tree grammars) were proposed as another
compressed representation of trees in the context of XML [19,5]. Whereas a
dag can be seen as a reqular tree grammar [7] that generates exactly one
tree, an SL cf tree grammar is a context-free tree grammar [7] that generates
exactly one tree. SL cf tree grammars allow to share identical intermediate
parts in a tree. This results in better compression rates in comparison to dags:
in the theoretical optimum, SL cf tree grammars lead to doubly exponential
compression rates, whereas dags only allow singly exponential compression
rates. In [5], a practical algorithm (BPLEX) for generating a small SL cf tree
grammar that produces a given input tree is presented. Experiments with ex-
isting XML benchmark data show that BPLEX results in significantly better
compression rates than dag-based compression algorithms.

In Section 3 we study the problem of evaluating compressed trees via tree
automata [7,12]. Tree automata play a fundamental role in many applica-
tions where trees have to be processed in a systematic way. In the context of
XML, for instance, tree automata are used to type check documents against
an XML type [22,23]. These applications motivate the investigation of general
decision problems for tree automata like emptiness, equivalence, and intersec-
tion nonemptiness. Several complexity results are known for these problems,
see e.g. [7]. Membership problems for tree automata were investigated in [16]
for ranked trees (see Table 1 for the results of [16]) and [28] for unranked trees
from the perspective of computational complexity. Here we extend this line of
research by investigating the computational complexity of membership prob-
lems for various classes of tree automata on compressed trees (dags and SL
cf tree grammars). For deterministic/nondeterministic top-down/bottom-up
tree automata we analyze the fixed membership problem (where the tree au-
tomaton is not part of the input) as well as the uniform membership problem
(where the tree automaton is also part of the input). Moreover, we also con-
sider subclasses of SL cf tree grammars that allow more efficient algorithms
for evaluating tree automata. In particular, linearity and the restriction that
for some constant k, every production of the SL cf tree grammar contains
at most k parameters (variables) lead to better complexity bounds. For all
cases, we present upper and lower bounds which vary from NL (nondetermin-
istic logspace) to PSPACE (polynomial space). Our results are collected in
Table 1. We also briefly consider the parameterized complexity [10] of mem-
bership problems for tree automata.

In Section 4 we consider the problem of evaluating core XPath expressions
over compressed trees. XPath is a widely used language for selecting nodes
in XML documents and is the core of many modern XML technologies. The
query problem for XPath asks whether a given node in a given (unranked)
tree is selected by a given XPath expression. For uncompressed trees, the



complexity of this problem is intensively studied in [13,14]. For input trees that
are represented as dags, XPath evaluation was investigated in [4,11,21]. In [11]
it was shown that the evaluation problem for core XPath (the navigational part
of XPath) over dag-compressed trees is PSPACE-complete. Here, we extend
this result to linear SL cf tree grammars (Theorem 9). This is remarkable,
since linear SL cf tree grammars lead to (provably) better compression rates
than dags, which is also confirmed by our experimental results for the BPLEX-
algorithm (which produces linear SL cf tree grammars) from [5].

A short version of this paper appeared in [18].

2 Preliminaries

For background in complexity theory see [24]. The set of all finite strings over
a (not necessarily finite) alphabet 3 is ¥*. The empty string is e. The length
of a string w is |u|. We write u = v for u,v € ¥* if u is a prefix of v. The
reflexive and transitive closure of a binary relation — is denoted by —.

2.1 Trees, dags, and SL cf tree grammars

A ranked alphabet is a pair (F,arity), where F is a finite set of function
symbols and arity : F — N assigns to each o € F its arity (or rank). Let
Fi = {a € F | arity(a) = i}. Function symbols in Fy are called constants.
In all examples we use symbols a € Fy and f € F,. Mostly we omit the
function arity in the description of a ranked alphabet. An F-labeled tree t (or
ground term over F) is a pair t = (domy, A), where (i) dom; C N* is finite, (ii)
A - dom; — F, (iii) if v < w € domy, then also v € domy, and (iv) if v € dom,
and \(v) € F,, then vi € dom, if and only if 1 < i < n. Note that the edge
relation of the tree ¢ can be defined as {(v,vi) € dom, x dom, | v € N*,i € N}.
The size of t is [t| = |dom,|. With an F-labeled tree ¢ we associate a term in
the usual way: If A\;(¢) = a € F;, then this term is a(ty,...,t;), where ¢; is
the term that corresponds to the subtree of ¢ rooted at the node j € N. The
set of all F-labeled trees is T'(F). Let us fix a countable set X’ of variables.
The set of all F-labeled trees with variables from X is T'(F, X'). Formally, we
consider variables as new constants and define T'(F, X)) = T(F U X). A tree
t € T(F,X) is linear, if every variable z € X occurs at most once in ¢. A
term rewriting system, briefly TRS, over a ranked alphabet F is a finite set
R CT(F,X)xT(F,X) such that for all (s,t) € R, every variable that occurs
in ¢ also occurs in s and furthermore s € X. The one-step rewrite relation —x
over T'(F, X) is defined as usual, see for instance [2].



Dags (directed acyclic graphs) are a popular compressed representation of
trees that allows to share identical subtrees. An F-labeled dag is a triple
D = (Vp, Ap, Ep) where (i) Vp is a finite set of nodes, (ii) Ap : Vp — F labels
each node with a symbol from F, (iii) Ep C VpxNxVp (i.e. edges are directed
and labeled with natural numbers), (iv) every v € Vp contains precisely one
i-labeled outgoing edge for every 1 < ¢ < arity(Ap(v)), and (v) (Vp, Ep) is
acyclic and contains precisely one node rootp € Vp without incoming edges.
The size of D is |D| = |Vp|. A root-path in D is a path vy, iy, va,09,...,0,
in the graph (Vp, Ep), ie., vy € Vp (1 < k < n) and (vg, i, vk41) € Ep
(1 < k < n) that moreover starts in the root node, i.e., v; = rootp. Such a
path can be identified with the label-sequence iyis - - - 7,1 € N*. An F-labeled
dag D over F can be unfolded into an F-labeled tree eval(D): domeyay(p) is
the set of all root-paths in D (viewed as a subset of N*), and if the root-path
p € N* ends in the node v € Vp, then we set Aevai(py(p) = Ap(v). Clearly the
size of eval(D) is bounded exponentially in |D|.

Example 1 Let D be the following dag:

h—»a
Y

We have eval(D) = g(f(h ( ), h(a)), f ( (a),h(a)),h(a)). Moreover, the size of
D is 4. We have domea(p) = {¢,1,2,3,11,12,21,22, 111, 121,211,221, 31}.

In this paper we also consider a compressed representation of trees recently in-
troduced in [19], which generalizes the dag-representation: straight-line context-
free tree grammars (SL cf tree grammars). An SL cf tree grammar is a tuple
G = (F,N,S, P), where (i) N UF is a ranked alphabet, (ii) N is the set of
nonterminals, (iii) F is the set of terminals, (iv) S € N is the start nontermi-
nal and has rank 0, (v) P (the set of productions) is a TRS over N U F that
contains for every A € N exactly one rule of the form A(xy,...,2,) — ta,
where n = arity(A) and z1, . .., z, are pairwise different variables, and (vi) the
relation {(A4, B) € N x N | B occurs in t4} is acyclic. These conditions ensure
that for every A € N of rank n there is a unique tree evalg(A)(xy,...,2,) €
T(F,{x1,...,2,}) such that A(xz1,...,2,) —p evalg(A)(x1,...,7,). We de-
fine eval(G) = evalg(S) € T(F). The size of G is |G| = Y scn |tal. We say
that G is an SL cf tree grammar with k parameters (k > 0) if arity(A) < k
for every A € N. The SL cf tree grammar G is linear if for every production
A(xy,...,x,) — ta in P the tree t4 is linear.

An SL cf tree grammar can be seen as a context free tree grammar [7] that
generates exactly one tree. Alternatively, an SL cf tree grammar is a recursive
program scheme [8] that generates a finite tree. SL cf tree grammars generalize



string generating straight-line programs [27] in a natural way from strings to
trees. The following example shows that SL cf tree grammars may lead to
doubly exponential compression rates; thus, they can be exponentially more
succinct than dags:

Example 2 Let the (non-linear) SL cf tree grammar G, consist of the fol-
lowing productions: S — Ag(a), Aj(x) — Ait1(Aipa(z)) for 0 < i < n, and
An(x) = f(x,x). Then eval(G,,) is a complete binary tree of height 2™. Thus,
leval(G,,)| € O(2*"). Note that G,, has only one parameter.

On the other hand, it is easy to prove by induction over the number of produc-
tions that linear SL cf tree grammars can only achieve exponential compression
rates. But linear SL cf tree grammars are still more succinct than dags: The
tree h(h(---h(a)---)) with 2" many occurrences of h can be generated by a
linear SL cf tree grammar of size O(n), which is not possible with dags.

An SL cf tree grammar G = (F, N, S, P) with 0 parameters (i.e., arity(4) =0
for every nonterminal A € N) can be easily transformed in logspace into an
F-labeled dag that generates the same tree: we take the disjoint union of all
right-hand sides of productions from P, where the root of the right-hand side
for the nonterminal A gets the additional label A. Then we merge for every
nonterminal A all nodes with label A. Note that since arity(A) = 0 for every
A € N, nonterminals can only occur as leafs in right-hand sides of GG. Thus,
this merging process results in a dag. For instance, the SL cf tree grammar
with the productions S — g(A, A, B),A — f(B, B), B — h(a) corresponds to
the dag from Example 1. Vice versa, from an F-labeled dag we can construct
in logspace an equivalent SL cf tree grammar with 0 parameters by taking the
nodes of the dag as nonterminals. Thus, dags can be seen as special SL cf tree
grammars, which justifies our choice to denote with eval both the evaluation
function for dags and unrestricted SL cf tree grammars.

2.2  Tree automata

A (nondeterministic) top-down tree automaton, briefly TDTA, is a tuple A =
(Q,F,q, R), where @ is a finite set of states, QUF is a ranked alphabet with
arity(q) = 1 for all ¢ € Q, qo € Q is the initial state, and R is a TRS such
that all rules have the form ¢(a(xq,...,2,)) — alqi(z1),...,qn(xs)), where
4 q1,---,qn € Q, x1,..., 1, are pairwise different variables, and a € F has
rank n. A is a deterministic TDTA if no two rules in R have the same left-
hand side. The tree language that is accepted by a TDTA A is T(A) = {t €
T(F) | qo(t) =% t}. A (nondeterministic) bottom-up tree automaton, briefly
BUTA, is a tuple A = (Q, F,Qs, R), where ) and F are as above, Q¢ C @
is the set of final states, and R is a TRS such that all rules have the form



alq(x1), ... qn(zn)) — qlalxy, ..., x,)), where ¢, q1,...,q, € Q, T1,...,%y
are pairwise different variables, and a € F has rank n. A is a deterministic
BUTA if no two rules in R have the same left-hand side. The tree language
that is accepted by a BUTA A is T(A) = {t € T(F) | 3¢ € Q; : t 5x
q(t)}. It is straight-forward to transform a nondeterministic BUTA into an
equivalent nondeterministic TDTA and vice versa, and these transformations
can be performed by a logspace transducer. Thus, in the following we do not
distinguish between nondeterministic BUTAs and nondeterministic TDTAs,
and we call them simply tree automata (TAs). A subset of T'(F) is recognizable
if it is accepted by a TA. Using a powerset construction, every recognizable
tree language can be also accepted by a deterministic BUTA, but this involves
an exponential blowup in the number of states. For deterministic TDTAs the
situation is different; they only recognize a proper subclass of the recognizable
tree languages. The size |A| of a TA is the sum of the sizes of all left and right
hand sides of rules. Let G be a class of SL cf tree grammars (e.g., the class
of all dags or the class of all linear SL cf tree grammars). The membership
problem for the fixed TA A and the class G is the following decision problem:

INPUT: Ge g
QUESTION: Does eval(G) € T(.A) hold?

Here, the input size is |G|. For a class C of tree automata, the uniform mem-
bership problem for C and the class G is the following decision problem:

INPUT: G € Gand A€C
QUESTION: Does eval(G) € T(.A) hold?

In this problem the input size is |A| + |G|.

The upper part of Table 1 collects the complexity results that were obtained
in [16] for uncompressed trees. The statement that for instance the member-
ship problem for TAs is NC'-complete means that for every fixed TA the
membership problem is in NC! and that there exists a fixed TA for which
the membership problem is NC'-hard. More details on tree automata can be
found in [7,12].

3 Membership Problems for Dags and SL CF Tree Grammars

The time bounds in the following theorem are based on dynamic programming.
Note that only the number k of parameters appears in the exponent. The
idea is to run the tree automaton A bottom up on the right-hand sides of
G’s productions. For the parameters we have to assume at most n* different
possibilities of states of A which (a deterministic simulation of) A maps to a
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Table 1
Complexity results for (uniform) membership problems

state of A.
Theorem 1 The following holds:

(1) For a given TA A with n states and a linear SL cf tree grammars G with k
parameters we can check in time O(n*1-|G|-|A|) whether eval(G) € T(A).
(2) For a given deterministic BUTA A with n states and a given SL cf tree
grammars with k parameters we can check in time O(n*-|G|-|A|) whether

eval(G) € T(A).

Proof. For (1) let A = (Q,F,Qr,R) be a nondeterministic BUTA and let
G = (F,N,S,P) be a linear SL cf tree grammar such that arity(A) < k for
every A € N. We calculate for every nonterminal A and all (q,q1,...,q) €
Q") where arity(A) = ¢ < k, a boolean value ok(A,q,q,...,q), where
ok(A,q,qu,...,q) is true if and only if evalg(A)(q1,...,q) —r ¢ is true.
First, note that ok has at most |Q|*! - |[N| entries, which is polynomial, since
k is a constant. We calculate the entries for ok using dynamic programming.
Assume that A(zq,...,x;) — t(z1,...,2) is the unique production for the
nonterminal A and assume that for every nonterminal B that occurs in the
tree t, all boolean values ok(B,p,p1, ..., Parity()) are already calculated. We
want to calculate the boolean value ok(A,q,q,...,q:). For this, we simu-
late the deterministic powerset automaton P(A) of A on the tree ¢. It is
not necessary to construct P(A) explicitly (which is not possible in poly-



nomial time), we calculate, on the fly, only the transition of P(.A) that is
needed in the current simulation step. Moreover, in the unique occurrence
of the variable z; (1 < ¢ < {) in ¢t we start the simulation in the state g;
(more precisely, in the singleton set {¢;}). If we have evaluated all children
V1, .., Varity(B) for a node v that is labeled with a nonterminal B € N in ¢,
then we can evaluate the node v by using the already calculated boolean values
ok(B,p,P1; - - - Darity(p)): Assume that we have calculated for the child v; the
set U; C Q. Then, the node v evaluates to the set of all p € () such that there
exists (1, ..., Darity(B)) € H?E?(B) U; with ok(B,p,p1, ..., Darity(s)) = true.
The total calculation needs time O(|Q|*™ - |A| - |G]), because for every A € N
of rank £ there are |Q|“"! many tuples for which ok has to be evaluated. For ev-
ery specific tuple (4, ¢, q1, - - ., q¢) the evaluation of ok needs time O(|A| - |ta]),
where t4 is the right-hand side of A, because for every node in t4 every
transition of A has to be considered only once. Thus, in total we need time
Yaen O(|QPY T A - [t4]) < O(QI*! - |A] - |G]). At the end, we accept
if and only if ok(S, ¢) is true for some final state ¢ € ()5 of A.

The reader might ask, at which point in the previous algorithm it is important
that G is linear. If G is nonlinear, then a variable x; might have exponentially
many (say ¢; many) occurrences in the tree eval(A)(xy,...,z,). In a certain
occurrence of the tree eval(A)(z1, ..., x,) within the tree eval(G) these occur-
rences of x; correspond to tree nodes v; 1, ..., v;¢,. Now we cannot expect that
the automaton A arrives at each node v;; (1 < j < ¢;) in the same state g;
during a successful run on eval(G). In other words, in the nonlinear case, it
is not sufficient to describe the behavior of A on the tree evalg(A) by the set
of all tuples (q,q1,...,q) € Q" such that evalg(A)(q,...,q) == ¢. On
the other hand, if A is deterministic, then A arrives at each node v; ; in the
same state, because at each of these nodes the same subtree is rooted. In other
words, it is not necessary to substitute different states for different occurrences
of the same variable in evalg(A)(z1, ..., x), and non-linearity does not cause
any problems. This proves statement (2) for deterministic BUTAs from the
theorem. 0O

Recall that a dag can be seen as a (linear) SL cf tree grammar without pa-
rameters. Thus, Theorem 1 can also be applied to dags in order to obtain a
polynomial time algorithm for the uniform membership problem for TAs and
dags. A reduction from the P-complete monotone circuit-value problem (see
e.g. [24]), shows:

Theorem 2 There exists a fived deterministic BUTA A such that the mem-
bership problem for A and dags is P-hard.

Proof. Recall that the monotone boolean circuit-value problem is P-complete,
see e.g. [24]. Let the ranked alphabet F contain the binary function symbols
A and V and the constants 0 and 1. Then, a monotonic circuit corresponds to



an F-labeled dag. The state set of the deterministic BUTA A is {0, 1} and the
rules of A correspond to the evaluation rules for A and V. The unique final
state of Ais 1. O

Remark 1 By Theorem 1 and 2, the (uniform) membership problem for (de-
terministic) BUTAs on dags is P-complete. This result may appear surprising
when compared with a recent result from [1]: the membership problem for so
called dag automata s NP-complete. But in contrast to our approach, a dag
automaton operates directly on a dag, whereas we consider ordinary tree au-
tomata that run on the unfolded dag. This makes a crucial difference for the
complexity of the membership problem.

By the next theorem, a deterministic TDTA can be evaluated on a dag in NL
(nondeterministic logspace). The crucial fact is that a deterministic TDTA A
accepts a tree ¢ if and only if the path language of ¢ (which is, roughly speaking,
the set of all words labeling a maximal path in the tree ¢) is included in some
regular string language L [12], where L is accepted by a finite automaton B
that is logspace constructible from A. Now we guess a path in the input dag
and simulate B on this path. The NL lower bound is obtained by a reduction
from the graph accessibility problem for dags.

Theorem 3 The uniform membership problem for deterministic TDTAs and
dags is in NL. Moreover, there exists a fized deterministic TDTA such that
the membership problem for A and dags is NL-hard.

Proof. For the upper bound we need the concept of the path language P(t) of
a tree t € T(F). It is a language over the alphabet ¥ = FoU{a; |a € F,1 <
i < arity(a) > 0} and inductively defined as follows: If A\(¢) € Fy, then
P(t) = {\(e)}, otherwise P(f(t1,...,t,)) = {fiw | 1 <i < n,w € P(t;)}.
For an F-labeled dag D let P(D) = P(eval(D)). For instance, for the dag D
from Example 1 we have P(D) = {g1 fihia, g1 foh1a, g2 f1h1a, g2 fohia, gshia}.
Now, for a given deterministic TDTA A it is easy to construct in logspace a
deterministic finite automaton B over the alphabet 3 such that P(t) C L(B) if
and only if ¢ € T(A) [12]. Thus, P(D)\L(B) # 0 if and only if eval(D) & T'(A).
By guessing a path from the root of D to a leaf and thereby simulating the
deterministic automaton B, we can check in NL whether P(D) \ L(B) # 0.
The NL upper bound follows from the complement closure of NL, see e.g. [24].

We prove the lower bound by a reduction from the graph accessibility problem
for dags, which is NL-complete, see e.g. [24]. Let (V, E) be a directed acyclic
graph where w.l.o.g. every node has outdegree 0 or 2, and let u,v € V' be two
nodes, where u has outdegree 2 and v has outdegree 0. We construct a dag D
and a deterministic TDTA A such that eval(D) € T(A) if and only if there
is no path from u to v in the graph (V, E); by the complement closure of NL
[24] this suffices in order to prove the NL lower bound. By adding new nodes
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Fig. 1. A directed acyclic graph (V, E) and the dag D constructed from (V, E)

of outdegree 2 we may ensure that (V, ) has exactly one node of indegree 0.
Next, we label the node u with the binary function symbol g and we label every
other node of outdegree 2 with the binary function symbol f. Moreover, we
label the node v with the constant b and we label every other node of outdegree
0 with the constant a. Call the resulting labeled dag D, see Figure 1 for an
example. Then v is not reachable from u in the dag (V, E) if and only if every
path in eval(D) from the root to a leaf that visits a g-labeled node also visits
an a-labeled node. We can easily construct a fixed deterministic TDTA that
checks the latter property. O

By combining the statements in Theorem 1-3 we obtain the results for dags
in Table 1.

SL cf tree grammars allow higher compression rates than dags. This makes
computational problems harder when input trees are represented via SL cf tree
grammars. The following result reflects this phenomenon. The PSPACE lower
bound is shown by a reduction from QSAT (quantified boolean satisfiability),
see e.g. [24].

Theorem 4 The uniform membership problem for TAs and SL cf tree gram-
mars is in PSPACE. Moreover, there exists a fized deterministic BUTA such
that the membership problem for A and SL cf tree grammars is PSPACE-hard.

Proof. For the upper bound let G = (F, N, S, P) be an SL cf tree grammar
and let A = (Q,F,Qs, R) be a nondeterministic BUTA. Let P(A) be the
deterministic BUTA that results by the usual powerset construction from A.
Thus, the state set of A is the powerset P(Q) = {U | U C Q} of Q. We will
not construct P(A) explicitly, which is of course not possible in polynomial
space. But we can evaluate P(.A) on a given tree in polynomial space (even in
polynomial time) by constructing the currently necessary production of P(.A)
on the fly. This was also done in the proof of Theorem 1.

In the following we will use the notation ok(A,U, Uy, ...,U,) from the proof

of Theorem 1 for the powerset automaton P(A). Thus, A € N is a nonter-
minal of G and U, Uy, ..., U, C Q. The meaning of ok(A,U, Uy, ...,U,) with

10



n = arity(A) is that the deterministic BUTA P(A) arrives at the root of
evalg(A)(z1,...,x,) in state U if it starts in every occurrence of x; in state
U;. Note that a tuple (A,U,Uy,...,U,) can be stored in polynomial space.
Moreover, note that since P(A) is deterministic, it is sufficient to verify in
PSPACE whether an assertion ok(A, U, Uy, ..., U,) is true, see the remarks at
the end of the proof of Theorem 1. We will do this verification nondeterminis-
tically using a pushdown of polynomial size. This pushdown contains tuples of
the form (A, U,Uy,...,U,) € N x P(Q)"*!, where n = arity(A). Initially the
pushdown contains only one tuple of the form (S, U), where U is guessed such
that U N Qs # 0. Now assume that the topmost tuple is (A, U,Uy,...,U,)
and let A(xy,...,x,) — t(z1,...,2,) be the unique production in P for the
nonterminal A. First, we pop this tuple from the pushdown. Then we start
running the deterministic BUTA P(A) on the tree ¢(Uy,...,U,). If during
this run, A has assigned to every child v; (1 < i < m) of a node v that is
labeled with a nonterminal B € N a subset V; C @), then we guess a subset
V C @, assign V' to the node v and push the tuple (B,V,Vi,...,V,,) onto
the pushdown. Finally, if P(A) arrives at the root of ¢ in state U, then we
may pop the next tuple from the pushdown, otherwise we reject. We accept
if the pushdown is empty. Note that the number of tuples on the pushdown
is bounded by k - | N|, where k is the maximal number of nonterminals in a
right-hand side of a production. Since every tuple can be stored in polynomial
space, the whole algorithm works in polynomial space.

We prove the lower bound by a reduction from QSAT (quantified satisfiability)
[24]. This reduction was also used in [15] in the context of hierarchically defined
graphs. Let

V= Q121Qam2 - - - Quan 0(T1, ..., Ty)

be a quantified boolean formula, where @; € {V,3} and ¢(z1,...,z,) is a
boolean formula with variables from {zi,...,z,}. Let the ranked alphabet
F contain the binary function symbols A and V and the constants 0 and 1.
Then we may view ¢(z1,...,x,) as a tree over the ranked alphabet F with
variables zy, ..., x,. Let the SL cf tree grammar G be defined by the following
productions:

Ap(xy, . x) = o(T1, ... xp)
/\Az sy Z‘_,O,AZ‘ ey i—a]- if Z:V
Ai—l(x17"'7$i—1)_) ( (xl it ) (xl it )) 1 Q
\/(Ai(xly"'axi—bo)vAi(mla'"axi—lal)) if lezl
for0<i<n
S—>AU

Finally let A be the deterministic BUTA from the proof of Theorem 2 for
evaluating boolean formulas. Then eval(G) € T'(A) if and only if the formula
1 is true. O
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Only for deterministic TDTAs we obtain more efficient algorithms in the con-
text of general SL cf tree grammars. The polynomial time upper bound in the
next theorem is again based on the concept of the path language of a tree. For
an SL cf tree grammar G, we show that the path language of eval(G) can be
generated by a small context-free string grammar. The lower bound follows
from a result of [20] about string straight-line programs.

Theorem 5 The uniform membership problem for deterministic TDTAs and
SL cf tree grammars is in P. Moreover, there is a fized deterministic TDTA
such that the membership problem for A and linear SL cf tree grammars with
only one parameter is P-hard.

Proof. For the upper bound recall the definition of the path language P(t) C
Y*of atreet € T(F), where ¥ = FoU{a; | « € F,1 < i < arity(a) > 0} from
the proof of Theorem 3. For the input SL cf tree grammar G = (F, N, S, P)
let P(G) = P(eval(G)). Using a construction that is inspired by [9], we will
build in polynomial time (w.r.t. |G]) a context-free grammar H such that
L(H) = P(G). The set of nonterminals M of H is M = {A € N | arity(N) =
0}U{A; | Ae N,1 <i<arity(N) > 0}. Note that the path language P(t) of
every tree t over the ranked alphabet N U F is a language over the alphabet
M U Y. The start nonterminal of H is S € N N M. The productions of H
are defined as follows: First let A € N be a nonterminal of rank 0 and let
A — t be the corresponding production in P. Then, in H we introduce the
productions A — wy |wsy |-+ |wy,, where {wy,...,w,} = P(t). Now let us
take a production A(zq,...,x,) — t(x1,...,x,) from P where n > 0. Then,
for every 1 < i < n we put into H the productions A; — wy |ws |-+ wp,
where {wy, ..., w,} is the set of those strings w such that wx; belongs to the
path language P(t(z1,...,x,)) (here, the variable z; is viewed as a constant).
Note that the number m is bounded by the number of leafs of t(xq,...,x,)
and hence by the size of G. It is easy to check that indeed L(H) = P(G). Let
us consider an example. Assume that G consists of the following productions:

S — A(a,b)
A(ZEl,ZL‘Q) — B(B(ZL’l,CL’Q), B(xlva»
B(x1,x2) — f(1,22)

Then H contains the following productions:

S — Aja | Asb
Ay — BBy | By By
Ay — BB, ’ By By
B; — f; for i € {1,2}

Next, since A is a deterministic TDTA, we can construct in polynomial time a
deterministic finite automaton B over the alphabet ¥ such that P(t) C L(B) if
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and only if ¢ € T(.A), see also the proof of Theorem 1. Thus, L(H)\ L(B) = ()
if and only if eval(G) € T(A). From H and B we can construct in polynomial
time a context-free grammar for L(H) \ L(B). Emptiness for this grammar
can be checked in polynomial time.

For the lower bound we can use a result of [20] for straight-line programs
(SLPs). An SLP is an ordinary context-free grammar G' = (N,I', S, P) (N is
the set of nonterminals, I is the set of terminals, S is the start nonterminal,
and P C N x (NUT)* is the finite set of productions) such that: (i) for every
A € N there exists exactly one production (A,w,4) € P with left-hand side A
and (ii) the relation {(A,B) € N x N | B occurs in w,} is acyclic. Clearly,
every SLP G generates exactly one string eval(G) € I'*. By [20], there exists
a fixed regular language L such that it is P-complete to determine whether
eval(G) € L for a given SLP G. The theorem follows immediately by using the
standard encoding of strings over I" by trees over the ranked alphabet T'U{#},
where arity(a) = 1 for all @ € T" and arity(#) = 0: The string a1as- - - a,, is
encoded by the tree aj(as(- - - a,(#) - - -)). Under this encoding, a regular string
language can be recognized both by a deterministic bottom-up as well as a
deterministic top-down tree automaton. Moreover, an SLP corresponds to a
linear SL cf tree grammar with only one parameter. O

From Theorem 1 and 5 (resp. Theorem 4 and 5) we obtain the complexity
results for linear SL cf tree grammars with a fixed number of parameters
(resp. general SL cf tree grammars) in Table 1, see lin. SL + fixed number
para. (resp. general SL). The following result completes our characterization
presented in Table 1.

Theorem 6 The uniform membership problem for TAs and (non-linear) SL
cf tree grammars with only one parameter is PSPACE-hard.

Proof. We prove the theorem by a reduction from QSAT [24]. Let us take
a quantified boolean formula ¢» = Qix1 - Qnx, @, where Q; € {V,3} and
¢ is a boolean formula with variables from X = {zy,...,2,}. W.lLo.g. we
may assume that in ¢ the negation operator — only occurs directly in front
of variables. Let X = {2 | z € X}. We define an SL cf tree grammar G as
follows: The set of terminals contains the binary function symbol f, a unary
function symbol ¢; for every z; € X, and a constant a. The set of nonterminals
contains the start nonterminal S, and for every subformula « of v it contains
a nonterminal A, of arity 1. The productions of G are:

S — Ay(a)
Auy) =y ifae XUX
Aaly) — f(As(ti(y)), As(y)) if o € {Va;3, 3x; 8}
Aaly) — f(As(y), Ay (y) ifae{BAy,BVA}
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An occurrence of the symbol ¢; on a path in the tree eval(G) indicates that the
variable z; is set to true. Note that from a nonterminal A,, where o begins
with a quantification Jz; or Vz; we first generate a branching node (labeled
with the binary symbol f). Moreover, the left branch gets in addition the
unary symbol ¢;, which indicates that x; is set to true. The absence of ¢; in
the right branch indicates that z; is set to false.

We define a nondeterministic TDTA A as follows: The state set of A contains
all subformulas of ¢ plus an additional state ¢q. The initial state of A is the
whole formula ). The set R of transition rules of A consists of the following
rules:

a(f(y,2)) — fla(y). q(2))
q(ti(y)) — ti(a(y)) for all i
q(a) = a
alf(y,2)) — f(B(y),q(2)) if « = Fx;5 for some i
a(f(y,2)) — fla(y),B(2)) if a = Jz;3 for some i
alf(y,z)) — f(B(y), B(z)) if o = Va; for some i
a(f(y,2)) — f(B(y),q(2)) if o= 3V for some v
a(f(y,z)) = fla(y),~(z)) if @ =3V v for some 3
a(f(y,2)) = f(By),7(2)) ifa= B Ay
a(ti(y)) — ti(a(y)) if a € (X UX)\ {z;, ~ai}
a(ti(y)) — ti(a(y)) if a= i
ala) —a ifaeX

Figure 2 shows the tree eval(G) for the true quantified boolean formula
Vai3zg @ (2 A —xg) V (—xy A x9),

where in addition every node is labeled with a state of the automaton A such
that the overall labeling is an accepting run.

By the first three rules for state ¢, q(t) —>x t for every ground tree t. Thus, if
we reach the state ¢, then the corresponding subtree is accepted. If the current
state « is an existential subformula Jz;3, then we guess nondeterministically
one of the two subtrees of the current f-labeled node (i.e., we choose an
assignment for x;) and verify 3 in that subtree. The other subtree is accepted
by sending ¢ to that subtree. Similarly, if the current state « is a universal
subformula Vz; (3, then we verify 8 in both subtrees, i.e., for both assignments
for x;. The rules for « = Vv and @ = 8 A 7y can be interpreted similarly.
Note that by construction of G and A, if the current state a is of the form
dz,6, VY;6, BV 7, or B A7, then the current tree node in eval(G) is an f-
labeled node. On the other hand, if the current state is from X U X, then the
current tree node in eval(G) is labeled with a symbol ¢; or the constant a. If
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the current state is a variable x;, then we search for the symbol ¢; in the chain
of t;-labeled nodes below the current node. We accept by going into the state
q (z;(ti(y)) — ti(q(y))) as soon as we find ¢;. If we do not find ¢; and end up in
the constant a, then we block; note that there is no rule of form z;(a) — a. On
the other hand, if the current state is a negated variable —x;, then we verify
that there is no ¢; in the chain of ¢;-labeled nodes below the current node.
Thus, we block as soon as we find ¢;; note that there is no rule with left-hand
side —z;(t;(y)). On the other hand, if we finally reach the constant a in state
—z;, then we accept via the rule —z;(a) — a. From the previous discussion, it
is not hard to see that the formula ¢ is true if and only if eval(G) € L(A). O

From Theorem 1 and Theorems 4-6 we obtain the results for SL cf tree gram-
mars with a fixed number of parameters in Table 1.

We end this section with two results concerning the parameterized complexity
of membership problems for tree automata. Parameterized complezity [10]
is a branch of complexity theory with the goal to understand which input
parts of a hard (e.g. NP-hard) problem are responsible for the combinatorial
explosion. A parameterized problem is a decision problem where the input
is a pair (k,z) € N x ¥*. The first input component k is called the input
parameter (it may also consist of several natural numbers). A typical example
of a parameterized problem is the parameterized version of the clique problem,
where the input is a pair (k,G), G is an undirected graph, and it is asked
whether G has a clique of size k. A parameterized problem (with input (k, z))
is in the class FPT (fixed parameter tractable), if the problem can be solved
in time f(k) - |x|°. Here c is a fixed constant and f is an arbitrary (e.g.,
exponential) computable function on N. This means that the non-polynomial
part of the algorithm is restricted to the parameter k.

Theorem 7 The following parameterized problem is in FPT:

INPUT: An SL cf tree grammar G with k parameters and a TA A with n
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states.
INPUT PARAMETER: (k:, n)
QUESTION: eval(G) € T(A)?

Proof. We first transform A into a deterministic BUTA with at most 2" states.
Then we apply Theorem 1 which gives us a running time of 2** - |G| - A. O

In recent years, a structural theory of parameterized complexity with the
aim of showing that certain problems are unlikely to belong to FPT was
developed. Underlying this theory is the notion of parameterized reductions
[10]: A parameterized reduction from a parameterized problem A (with input
(k,x) € N x X*) to a parameterized problem B (with input (¢,y) € N x I'™*) is
amapping f : NxX* — N xI'™ such that: (i) for all (k,z) € NxX*, (k,x) € A
if and only if f(k,z) € B, (ii) f(k,x) is computable in time g(k) - |x|® for some
computable function g and some constant ¢, and (iii) for some computable
function h, if f(k,z) = ({,y), then ¢ < h(k). A parameterized problem A is
fpt-reducible to a parameterized problem B if there exists a parameterized
reduction from A to B. One of the classes in the upper part of the parameter-
ized complexity spectrum is the class AW[P]. For the purpose of this paper it
is not necessary to present the quite technical definition of AW[P]. Roughly
speaking, AW[P] results from taking the closure (w.r.t. fpt-reducibility) of
a parameterized version of the PSPACE-complete QSAT problem. Problems
that are AW[P]-hard are very unlikely to be in FPT.

Theorem 8 The following problem is AW[P]-hard (w.r.t. fpt-reducibility):

INPUT: A deterministic BUTA A and an SL cf tree grammar G with k pa-
rameters

INPUT PARAMETER: k
QUESTION: eval(G) € T(A)?

Proof. We will use the fact that the following problem, called pFOMC (pa-
rameterized first-order model-checking), is hard (w.r.t. fpt-reducibility) for the
class AWIP], see [25]:

INPUT: A directed graph H = (V| F) and a sentence ¢ of first-order logic
(built up from the atomic formulas x = y and E(x,y) (for variables x and y)
using boolean connectives and quantification over nodes of H).

INPUT PARAMETER: The number of different variables that are used in ¢
QUESTION: Is ¢ true in the graph H?

It should be noted that it is open whether pFOMC also belongs to AW/[P].
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Thus, it suffices to reduce pFOMC to the problem in the theorem. Let H =
(V,E) be a directed graph and ¢ be a first-order sentence. W.l.o.g. assume
that V' = {1,...,n}. We define an SL cf tree grammar G as follows: The set
of terminals contains the constants 1,...,n, a unary function symbol =, and
binary function symbols E, =, and A. For every subformula ¢ (z) of ¢ we
introduce a nonterminal A,. Here, 7 is the sequence of free variables of 1, and
the rank of A, is the number of these free variables, i.e., arity(A,) = |Z|. The
start nonterminal is A,, which has rank 0, since ¢ has no free variables. The
productions of G are:

E(z,y) if (z) = E(z,y)
=(z,y) ifY(z) = (z=y)
Ay(Z) — ¢ ~(Ap(T)) if Y(z) = —0(z)
AN(Ay, (Z1), Ay, (Z2)) if () = P1(T1) A Pa(T2)
N(Ag(Z,1), Ag(Z,2),..., Ap(z,n)) if (Z) =Vyb(z,y)

Of course, in the last line, the n-ary A has to be replaced by a binary tree
of binary A-operators. Clearly, the number of parameters of G is bounded
by the maximal number of free variables in a subformula of ¢. The latter
number is bounded by the total number of different variables used in ¢. Now
we can easily construct from H a deterministic BUTA A with state set V' U
{true, false} such that eval(G) € T'(.A) if and only if ¢ is true in the graph H.
The BUTA A evaluates trees of the form =(a, b) and E(a,b), where a,b € V,
to boolean values and then evaluates the resulting boolean expression. This is
a parameterized reduction from pFOMC to the problem in the theorem. O

4 XPath Evaluation

In this section, we consider XML-trees that are compressed via SL cf tree
grammars and study the node selecting language XPath over such trees. For
more background on XPath see [13,14]. We restrict our attention to linear SL
cf tree grammars. Skeletons of XML documents are usually modeled as rooted
unranked labeled trees. Analogously to Section 2, an unranked tree with labels
from an (unranked) alphabet ¥ can be defined as a pair t = (domy, \;), where
(i) dom; € N* is finite, (ii) A; : dom; — F, (iii) if v < w € domy, then also
v € domy, and (iv) if vi € dom, then also vj € dom, for every 1 < j <. For
the purpose of this section, it is more suitable to view such an unranked tree
t = (domy, ;) as a relational structure t = (domy, child, next-sibling, (Q,)aex),
where Q, = );'(a), child = {(v,vi) € dom; x dom; | v € N*,5 € N}, and
next-sibling = {(vi,v(i+1)) € dom; x dom; | v € N* i € N}. Thus, child(u, v)
is the child-relation in ¢ and next-sibling(u, v) if and only if v is the right sibling
of u. From the basic tree relations child and next-sibling further tree relations

17



that are called XPath-azxes can be defined. For instance let descendant :=
child® (the reflexive and transitive closure of child) and following-sibling :=
next-sibling”. For the definition of the other XPath axes see for instance [13]. In
the following we consider the four XPath axes child, descendant, next-sibling,
and following-sibling; handling of other axes is straightforward and needs no
further ideas.

The node selection language core XPath [13] can be seen as the tree naviga-
tional (or, “structural”) core of XPath. Its syntax is given by the following
EBNF; here, x is an XPath-axis and a € ¥ U {*} (where * is a new symbol):

corexpath ::= locationpath | /locationpath
locationpath ::= locationstep (/ locationstep)*
locationstep ::= x 1 a | x :: a[pred]
pred ::= (pred and pred) | (pred or pred) | not(pred) | locationpath

Let Q. be the unary predicate that is true for every node of a tree t. We define
the semantics of core XPath by translating a given tree

t = (domy, child, next-sibling, (Q4)aes)

and a given expression m € L(corexpath) (resp. e € L(pred)) into a binary
relation S[m,t] C dom; x dom; (resp. a unary relation E[e,t] C dom,). Let
7, m, g € L(locationpath), e, eq, ey € L(pred), and let x be an XPath axes
(recall that € is the root of a tree).

Slx = alel, 1] = {(x,y) € dom; x domy | (z,y) € X,y € Qa, y € Ele, 1]}
S[/m,t] = dom; x {z € dony | (¢, x) € S[m,t]}
S[mi /7o, t] = {(x,y) € dom; x domy | Iz : (x, z) € S[my, ], (2,y) € S[ma, ]}
Eler and eq, t] = Eley, t] N Eea, t]
Eley or eg, t] = Eley, t] U Elea, t]
Enot(e), t] = domy \ Ele, t]
t]

Elr,

Recall that by definition SL cf tree grammars generate ranked trees. In order
to generate XML skeletons, i.e., unranked trees with SL cf tree grammars, we
encode unranked trees by binary trees (and hence ranked trees) using a stan-
dard encoding: For an unranked tree t = (domy, child, next-sibling, (Q4)aex)
define the binary encoding bin(t) = (domy, child1, child2, (Q,).ex), where (i)
(u,v) € childl if and only if (u,v) € child and there does not exist w € dom,
with (w,v) € next-sibling (i.e., v is the left-most child of u), and (ii) child2 =
next-sibling. Note that ¢ and bin(¢) have the same set of nodes. The following
theorem is our main result in this section.

{z € domy | Fy : (x,y) € S|, t]}

Theorem 9 The following problem is PSPACE-complete:
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INPUT: A linear SL cf tree grammar G generating a binary tree such that
eval(G) = bin(t) for some (unique) unranked tree t, two nodes u,v of eval(G),
and a core XPath expression m € L(corexpath).

QUESTION: (u,v) € S[m,t] ?

Proof. PSPACE-hardness follows from the corresponding result for dags from
[11]. The crucial point for the PSPACE-membership proof is the fact that for
a linear SL cf tree grammar G = (F, N, S, P) we can store a node of eval(G)
in polynomial space. For this we list a sequence of at most | N| pairs consisting
of a nonterminal A € N and a node in the unique right-hand side for A. Let
us illustrate the idea with an example: Let G = ({h, f,a},{S, A, B,C}, S, P),
where P contains the following linear productions:

S — A(B(a), B(a))
A(xy,29) — C(C(x1,a),C(xs,a))
C(z1,22) — h(f(z1,22))

B(z) — h(h(z))

Then eval(G) is the following tree:

h

1
f
1 2
h/ \h
1 1
f f
yN YN
h a

a

NPy
Y

Let us consider the f-labeled node 121 in this tree. It is generated from
the unique A in the right hand side A(B(a), B(a)) of S. The unique A in
A(B(a), B(a)) corresponds to the tree node € (the root) of A(B(a), B(a)).
Thus, we start our sequence with the pair (.5, ¢). Next, in the right-hand side
C(C(z1,a),C(x2,a)) of A we have to move to the last C' in order to arrive
at our goal node 121. The last C' is the right child of the root in the tree
C(C(xy1,a),C(z2,a)) and thus identified by the tree node 2. Hence, we pro-
ceed with the pair (A,2). Finally, in the right-hand side h(f(z1,22)) of C
we just have to specify the unique node labeled with f, which is the node 1.
Thus, the node 121 is represented by the sequence (S, €)(A,2)(C,1). Note that
this simple idea does not work for non-linear SL cf tree grammars due to the
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sharing of variables. In fact, it cannot work, because there may be doubly ex-
ponentially many nodes in eval(G) if G is nonlinear. Hence, any specification
of a node needs at least exponentially many bits.

In the following, we assume that nodes of eval(G) (for G linear) are always
represented in the polynomial size description outlined above. The following
fact is easy to show:

Fact 1 For given nodes u and v of eval(G) it can be checked in polynomial
time whether v is the k-th child of u for some given k or whether u is labeled
with some given symbol a.

Let us now return to the XPath evaluation problem. Let G be a linear SL
cf tree grammar such that eval(G) is a binary X-labeled tree with eval(G) =
bin(t) for some unranked tree ¢. Let us also take a core XPath expression
7w € L(corexpath). For the PSPACE upper bound we will use the fact that
PSPACE is precisely the class of all problems that can be solved on an al-
ternating Turing machine in polynomial time, see e.g. [24] for more details.
Roughly speaking, an alternating Turing-machine M is a nondeterministic
Turing-machine, where the set of states () is partitioned into three sets: ()5
(existential states), Qy (universal states), and F' (accepting states). A config-
uration C' with current state ¢ is accepting, if

e gc F, or
e ¢ € (3 and there exists a successor configuration of C' that is accepting, or
e g € )y and every successor configuration of C' is accepting.

An input word w is accepted by M if the corresponding initial configuration
is accepting.

Will show that the question, whether (u,v) € S[m,t] can be answered by
an alternating Turing-machine in polynomial time. For this, it is useful to
transform 7 into an equivalent first-order formula (with two free variables)
over the signature that contains all unary predicates (), and all XPath-axes,
i.e., the relations child, descendant, next-sibling, and following-sibling. This
translation is done inductively: Every ( € L(corexpath) is translated into
a first-order formula 9(¢)(x,y) over the signature containing child, descen-
dant, next-sibling, following-sibling, (Q4)eex. An expression e € L(pred) is
translated into a first-order formula ¢;(e)(x) with only one free variable. Let
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¢, (1, € L(locationpath) and e, eq, e € L(pred).

p2(x : ale])(z,y) = x(z,y) A Qa(y) A p1(e)(y)
©2(/CQ) (@, y) = 3z 1 pa(Q)(2,y) A =32’ child(Z, 2)
a2(C1/G)(x,y) = 32 1 pa(G) (0, 2) A pa(Ca)(2,9)
¢1(er and eg)(x) = 901( )( ) A pi(e2)(x)
p1(er or e2)(x) = pi1(e1)(x) V pi(ea)(x)
p1(not(e))(x) = =p1(e)(z)
e1(O) () = Fy : p2()(z,9)

These rules reformulate the semantic definition of XPath before Theorem 9
in the context of first-order logic. In the second line, the subformula -3z’ :
child(2’, z) expresses that z is the root of the tree. Let o(z,y) = pao(m)(z,y),
where 7 is our input XPath expression.

It remains to check, whether ¢(u,v) is true in the unranked tree ¢. Next
let us move to the binary tree eval(G) = bin(t). Recall that eval(G) con-
tains two edge relations: childl (left child) and child2 (right child). From
childl and child2 we define the binary relations descendant2 = child2* and
descendant = (childl U child2)*. From ¢(z,y) it is now straightforward to
construct a formula op,(x,y) over the signature containing childl, child2,
descendant2, descendant, (Q,)a.ex such that ¢(u,v) is true in the unranked
tree t if and only if Ypin(u,v) is true in bin(t) = eval(G). In order to construct
©pin (T, y) we only replace the atomic subformulas of p(z, y) that involve XPath
axes according to the following rules:

childy, (z,
(
(
(

following-sibling,;,, (z,

Jz : child1(z, z) A descendant2(z, y)
descendant(z, y)
c
de

descendanty;, (z,

hild2(z, y)
scendant2(x, y)

next-sibling; (z,

y)
y) :
y)
y) :

Thus, it suffices to check in PSPACE whether ¢, (u,v) is true in eval(G).

For this let us take an arbitrary first-order formula (zy,...,z,) over the
signature containing child1, child2, descendant2, descendant, (Q,).cx and let
uy, ..., u, be nodes of eval(G) that are represented as outlined above. We now

describe an alternating Turing machine M that checks in polynomial time the
truth of ¢ (uy, ..., u,) in the binary tree eval(G). W.l.o.g. we may assume that
the negation symbol in v only occurs in front of atomic formulas. Depending
on the outermost operator of ¢ the machine M behaves as follows:

(1) If Y(z1,...,2,) = Jy : O(y, z1,...,x,), then M guesses in an existential
state of M anode v € dom; and proceeds with the formula (v, uy, ..., u,).
(2) If Y(z1,...,2,) = Yy : 0(y,21,...,2,), then M proceeds analogously,
except that the guessing of the node u is done in a universal state of M.
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(3) If(xy,...,x0n) = P1(xy,. .., T0)Viha(xy,. .., 2,), then M guesses in an ex-
istential state an i € {1,2} and proceeds with the formula ¢;(u1, ..., uy,).
(4) If (xy, ..., z0) = P1(x1, ..., T0) Ao(xq,. .., 2,), then M proceeds anal-
ogously, except that the guessing of i € {1,2} is done in a universal state.

Since nodes of eval(G) can be stored in polynomial space with respect to the
size of the grammar G, the guessing of a node u in (1) and (2) can be done in
polynomial time. It remains to verify possibly negated atomic formulas. For a
statement (—)Qq(u), (—)child1(u,v), or (—)child2(u,v) we can directly check
the truth of the statement in polynomial time by Fact 1. For a statement
descendant2(u, v) we just have to check whether there is a path in the child2-
relation from u to v. This can be done in polynomial space (and hence in
alternating polynomial time) by guessing the path incrementally and thereby
storing only the last two nodes, for which we can check in polynomial time by
Fact 1 whether they are related by the child2-relation. For —descendant2(u, v)
we can use the closure of PSPACE under complement. For the relation de-
scendant we can argue analogously. O

5 Open Problems and Conclusions

An interesting class of SL cf tree grammars that is missing in our present com-
plexity analysis is the class of linear SL cf tree grammar (with an unbounded
number of parameters). Our algorithm BPLEX from [5] outputs linear SL cf
tree grammars. Note that BPLEX, even when bounding the number of pa-
rameters by a small constant (like 2 or 3), clearly outperforms compression by
dags; the results presented here show that with respect to tree automata (and
XPath evaluation) exactly the same complexity bounds hold as for dags [4,11].
This motivates us to believe that linear SL cf tree grammars are better suited
than dags as memory efficient representations of XML documents. Precise
trade-offs between the representations have to be determined in practice; we
are currently implementing our ideas as part of BPLEX. For the XPath eval-
uation problem, the complexity for non-linear SL cf tree grammars remains
open. We conjecture that the PSPACE upper bound from Theorem 9 cannot
be generalized to the non-linear case.
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