@inproceedings {INPROC-2020-30,
   author = {Alireza Naseri and Amin Totounferoush and Ignacio Gonzales and Miriam Mehl and Carlos P{\'e}rez-Segarra},
   title = {{A scalable framework for the partitioned solution of fluid–structure interaction problems}},
   booktitle = {Computational Mechanics},
   publisher = {Springer},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Mai},
   year = {2020},
   isbn = {10.1007/s00466-020-01860-y},
   keywords = {Mehl, Miriam; P{\'e}rez-Segarra, Carlos},
   language = {Englisch},
   cr-category = {G.1.8 Partial Differential Equations,     J.2 Physical Sciences and Engineering,     J.3 Life and Medical Sciences},
   ee = {https://link.springer.com/article/10.1007/s00466-020-01860-y},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {In this work, we present a scalable and efficient parallel solver for the partitioned solution of fluid–structure interaction problems through multi-code coupling. Two instances of an in-house parallel software, TermoFluids, are used to solve the fluid and the structural sub-problems, coupled together on the interface via the preCICE coupling library. For fluid flow, the Arbitrary Lagrangian–Eulerian form of the Navier–Stokes equations is solved on an unstructured conforming grid using a second-order finite-volume discretization. A parallel dynamic mesh method for unstructured meshes is used to track the moving boundary. For the structural problem, the nonlinear elastodynamics equations are solved on an unstructured grid using a second-order finite-volume method. A semi-implicit FSI coupling method is used which segregates the fluid pressure term and couples it strongly to the structure, while the remaining fluid terms and the geometrical nonlinearities are only loosely coupled. A robust and advanced multi-vector quasi-Newton method is used for the coupling iterations between the solvers. Both the fluid and the structural solver use distributed-memory parallelism. The intra-solver communication required for data update in the solution process is carried out using non-blocking point-to-point communicators. The inter-code communication is fully parallel and point-to-point, avoiding any central communication unit. Inside each single-physics solver, the load is balanced by dividing the computational domain into fairly equal blocks for each process. Additionally, a load balancing model is used at the inter-code level to minimize the overall idle time of the processes. Two practical test cases in the context of hemodynamics are studied, demonstrating the accuracy and computational efficiency of the coupled solver. Strong scalability test results show a parallel efficiency of 83\% on 10,080 CPU cores.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2020-30&engl=0}
}
@inproceedings {INPROC-2019-39,
   author = {Klaudius Scheufele and Shashank Subramanian and Andreas Mang and George Biros and Miriam Mehl},
   title = {{IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION}},
   booktitle = {SIAM Journal on Scientific Computing},
   publisher = {Springer},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {1--24},
   type = {Konferenz-Beitrag},
   month = {Juli},
   year = {2019},
   keywords = {tumor progression inversion; biophysical model calibration; image registration; PDE constrained optimization; Picard iteration},
   language = {Englisch},
   cr-category = {J.3 Life and Medical Sciences},
   ee = {https://arxiv.org/abs/1907.07774},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {We present a novel formulation for the calibration of a biophysical tumor growth model from a single-time snapshot, MRI scan of a glioblastoma patient. Tumor growth models are typically nonlinear parabolic partial differential equations (PDEs). Thus, we have to generate a second snapshot to be able to extract significant information from a single patient snapshot. We create this two-snapshot scenario as follows. We use an atlas (an average of several scans of healthy individuals) as a substitute for an earlier, pretumor, MRI scan of the patient. Then, using the patient scan and the atlas, we combine image-registration algorithms and parameter estimation algorithms to achieve a better estimate of the healthy patient scan and the tumor growth parameters that are consistent with the data. Our scheme is based on our recent work (Scheufele et al, ``Biophysically constrained diffeomorphic image registration, Tumor growth, Atlas registration, Adjoint-based methods, Parallel algorithms'', CMAME, 2018), but apply a different and novel scheme where the tumor growth simulation in contrast to the previous work is executed in the patient brain domain and not in the atlas domain yielding more meaningful patient-specific results. As a basis, we use a PDE-constrained optimization framework. We derive a modified Picard-iteration-type solution strategy in which we alternate between registration and tumor parameter estimation in a new way. In addition, we consider an {\^a}„“1 sparsity constraint on the initial condition for the tumor and integrate it with the new joint inversion scheme. We solve the subproblems with a reduced-space, inexact Gauss-Newton-Krylov/quasi-Newton methods. We present results using real brain data with synthetic tumor data that show that the new scheme reconstructs the tumor parameters in a more accurate and reliable way compared to our earlier scheme.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2019-39&engl=0}
}
@inproceedings {INPROC-2018-52,
   author = {Nehzat Emamy and Pascal Litty and Thomas Klotz and Miriam Mehl and Oliver R{\"o}hrle},
   title = {{POD-DEIM model order reduction of the Monodomain Reaction-Diffusion Sub-Model of the Neuro-Muscular System}},
   booktitle = {IUTAM Symposium on Model Order Reduction of Coupled Systems; Stuttgart, Germany, May 22-25, 2018: MORCOS 2018},
   editor = {J. Fehr and B. Haasdonk},
   publisher = {Springer},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {1--14},
   type = {Konferenz-Beitrag},
   month = {Mai},
   year = {2018},
   isbn = {879-3-030-21012-0},
   language = {Englisch},
   cr-category = {I.6.0 Simulation and Modeling General},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {We apply POD-DEIM model order reduction to a 0D/1D model used to simulate the propagation of action potentials through the myocardium or along skeletal muscle fibers. This corresponding system of ODEs (reaction) and PDEs (diffusion) is called the monodomain equation. 0D sets of ODEs describing the ionic currents flowing across the cell membrane are coupled along muscle fibers through a \$1\$D diffusion process for the transmembrane potential. Due to the strong coupling of the transmembrane potential and other state variables describing the behavior of the membrane, a total reduction strategy including all degrees of freedom turns out to be more efficient than a reduction of only the transmembrane potential. The total reduction approach is four orders of magnitude more accurate than partial reduction and shows a faster convergence in the number of POD modes with respect to the mesh refinement. A speedup of \$2.7\$ is achieved for a 1D mesh with \$320\$ nodes. Considering the DEIM approximation in combination with the total reduction, the nonlinear functions corresponding to the ionic state variables are also approximated in addition to the nonlinear ionic current in the monodomain equation. We observe that the same number of DEIM interpolation points as the number of POD modes is the optimal choice regarding stability, accuracy and runtime for the current POD-DEIM approach.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2018-52&engl=0}
}
@inproceedings {INPROC-2018-51,
   author = {Nehzat Emamy and Pascal Litty and Thomas Klotz and Miriam Mehl and Oliver R{\"o}hrle},
   title = {{POD-DEIM model order reduction for the Monodomain reaction-dissusion equation in neuro-muscular system}},
   booktitle = {Proceedings of 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) (ECCM 6) and the 7th European Conference on Computational Fluid Dynamics (ECFD 7); Glasgow, UK, June 11-15, 2018},
   editor = {Roger Owen and Ren{\'e} de Borst and Jason Reese and Chris Pearce},
   publisher = {International Center for Numerical Methods in Engineerin (CIMNE)},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {2514--2524},
   type = {Konferenz-Beitrag},
   month = {Juni},
   year = {2018},
   isbn = {978-84-947311-6-7},
   language = {Englisch},
   cr-category = {A General Literature,     G Mathematics of Computing,     E Data},
   ee = {ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2018-51/INPROC-2018-51.pdf},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {We apply the POD-DEIM model order reduction to the propagation of the transmembrane potential along \$1\$D muscle fibers. This propagation is represented using the monodomain partial differential equation. The monodomain equation, which is a reaction-diffusion equation, is coupled through its reaction term with a set of ordinary differential equations, which provide the ionic current across the cell membrane. Due to the strong coupling of the transmembrane potential and ionic state variables, we reduce them all together proposing a total reduction strategy. We compare the current strategy with the conventional strategy of reducing the transmembrane potential. Considering the current approach, the discrete system matrix is slightly modified to adjust for the size. However, size of the precomputed reduced system matrix remains the same, which means the same computational cost. The current approach appears to be four orders of magnitude more accurate considering the equivalent number of modes on the same grid in comparison to the conventional approach. Moreover, it shows a faster convergence in the number of POD modes with respect to the grid refinement. Using the DEIM approximation of nonlinear functions in combination with the total reduction, the nonlinear functions corresponding to the ionic state variables are also approximated besides the nonlinear ionic current in the monodomain equation. For the current POD-DEIM approach, it appears that the same number of DEIM interpolation points as the number of POD modes is the optimal choice regarding stability, accuracy and runtime.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2018-51&engl=0}
}
@inproceedings {INPROC-2018-50,
   author = {Steffen Hirschmann and Michael Lahnert and Carolin Schober and Malte Brunn and Miriam Mehl and Dirk Pfl{\"u}ger},
   title = {{Load-Balancing and Spatial Adaptivity for Coarse-Grained Molecular Dynamics Applications}},
   booktitle = {High Performance Computing in Science and Engineering '18},
   editor = {Wolfgang E. Nagel and Dietmar H. Kr{\"o}ner and Michael M. Resch},
   publisher = {Springer International Publishing},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {1--510},
   type = {Konferenz-Beitrag},
   month = {Oktober},
   year = {2018},
   isbn = {978-3-030-13324-5},
   doi = {10.1007/978-3-030-13325-2},
   language = {Englisch},
   cr-category = {G.1.0 Numerical Analysis General},
   ee = {ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2018-50/INPROC-2018-50.pdf},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {We present our approach for a scalable implementation of coupled soft matter simulations for inhomogeneous applications based on the simulation package ESPResSo and an extended version of the adaptive grid framework p4est. Our main contribution in this paper is the development and implementation of a joint partitioning of two or more distinct octree-based grids based on the concept of a finest common tree. This concept guarantees that, on all grids, the same process is responsible for each point in space and, thus, avoids communication of data in overlapping volumes handled in different partitions. We achieve up to 85 \% parallel efficiency in a weak scaling setting. Our proposed algorithms take only a small fraction of the overall runtime of grid adaption.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2018-50&engl=0}
}
@inproceedings {INPROC-2017-71,
   author = {Carolin Schober and David Keerl and Martin Lehmann and Miriam Mehl},
   title = {{Simulating the Interaction of Electrostatically Charged Particles in the Inflow Area of Cabin Air Filters Using a Fully Coupled System}},
   booktitle = {Proceedings of the VII International Conference on Coupled Problems in Science and Engineering},
   address = {Barcelona, Spain},
   publisher = {CIMNE},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {77--88},
   type = {Konferenz-Beitrag},
   month = {Mai},
   year = {2017},
   language = {Englisch},
   cr-category = {J.2 Physical Sciences and Engineering},
   ee = {ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2017-71/INPROC-2017-71.pdf},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {Cabin air filters are applied to prevent small particles such as pollen, fine dust and soot amongst others from being transferred into the interior (cabin) of a vehicle. The filter media often make use of the so called electret effect as means for achieving high filtration efficiency at low pressure drop. Thereby, electrostatic filtration effects are supplemented to the well-known mechanical collection mechanisms (such as inertia, diffusion,...). Besides the interference of several fiber-particle interactions (Coulombic attraction/repulsion, induced dipolar forces, image charge effects) particle-particle interactions potentially play an important role. However, this effect is completely neglected in previous research studies due to the high degree of complexity [1]. In this work, we present a detailed investigation of the particle behaviour in the inflow area and transition area to the filter media. For a precise description of the underlying physical procedures the simulation is based on a four-way coupling. This approach takes into account the reciprocal influence between the fluid flow and the particle motion as well as the interactions between single electrostatically charged particles. The software package ESPResSo [2] used in this work is based on a molecular dynamic approach and provides the advantage of efficient algorithms for the modelling of electrostatic interactions. In order to emulate the air flow, the molecular dynamic simulation is coupled with a Lattice-Boltzmann fluid. The presented talk focuses on the influence of the particle-particle interactions on the filtration performance. It is elaborated whether the fully coupled system is necessary in order to reflect reality more closely or the simulation can be simplified to reduce the degree of complexity and thus the computational costs. REFERENCES [1] S. Rief, A. Latz, A. Wiegmann, {\^a}€śComputer simulation of Air Filtration including electric surface charges in three-dimensional fibrous micro structures{\^a}€ť, Filtration 6.2, (2006). [2] A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Ko{\AA}ˇovan and C. Holm, {\^a}€śESPResSo 3.1: Molecular Dynamic Software for Coarse-Grained Models{\^a}€ť, Lecture Notes in Computational Science and Engineering, (2013).},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-71&engl=0}
}
@inproceedings {INPROC-2017-62,
   author = {Andreas Mang and Sameer Tarakan and Amir Gholami and Naveen Himthani and Subramanian and Shanshank and James Levitt and Muneeza Azmat and Klaudius Scheufele and Miriam Mehl and Christos Davatzikos and Bill Bart and George Biros},
   title = {{SIBIA-GlS: Scalable Biophysics-Based Image Analysis for Glioma Segmentation}},
   booktitle = {The multimodal brain tumor image segmentation benchmark (BRATS), MICCAI},
   publisher = {-},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {202--209},
   type = {Konferenz-Beitrag},
   month = {Juli},
   year = {2017},
   language = {Englisch},
   cr-category = {G.1.6 Numerical Analysis Optimization,     G.1.8 Partial Differential Equations,     J.3 Life and Medical Sciences},
   ee = {https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-62&engl=0}
}
@inproceedings {INPROC-2017-61,
   author = {Amir Gholami and Andreas Mang and Klaudius Scheufele and Christos Davatzikos and Miriam Mehl and George Biros},
   title = {{A Framework for Scalable Biophysics-based Image Analysis}},
   booktitle = {Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC17},
   address = {New York, NY, USA},
   publisher = {ACM},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {1--13},
   type = {Konferenz-Beitrag},
   month = {November},
   year = {2017},
   doi = {10.1145/3126908.3126930},
   isbn = {978-1-4503-5114-0},
   keywords = {bio-physics based image analysis; scalable image registration},
   language = {Englisch},
   cr-category = {G.1.6 Numerical Analysis Optimization,     G.1.8 Partial Differential Equations,     J.3 Life and Medical Sciences},
   ee = {ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2017-61/INPROC-2017-61.pdf,     https://dl.acm.org/citation.cfm?doid=3126908.3126930},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-61&engl=0}
}
@inproceedings {INPROC-2017-35,
   author = {Florian Lindner and Miriam Mehl and Benjamin Uekermann},
   title = {{Radial Basis Function Interpolation for Black-Box Multi-Physics Simulations}},
   booktitle = {Proceedings of the VII International Conference on Coupled Problems in Science and Engineering},
   editor = {International Center for Numerical Methods in Engineering (CIMNE)},
   address = {Barcelona, Spain},
   publisher = {CIMNE},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {50--61},
   type = {Konferenz-Beitrag},
   month = {Mai},
   year = {2017},
   isbn = {978-84-946909-2-1},
   language = {Englisch},
   cr-category = {G.1.1 Numerical Analysis Interpolation},
   ee = {ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2017-35/INPROC-2017-35.pdf},
   contact = {florian.lindner@ipvs.uni-stuttgart.de},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-35&engl=0}
}
@inproceedings {INPROC-2016-57,
   author = {Michael Lahnert and Takayuki Aoki and Carsten Burstedde and Miriam Mehl},
   title = {{Minimally-Invasive Integration of P4est in Espresso for Adaptive Lattice-Boltzmann}},
   booktitle = {The 30th Computational Fluid Dynamics Symposium ; Tokyo, Japan, December 12--14, 2016.},
   publisher = {Japan Society of Fluid Mechanics},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {1--7},
   type = {Konferenz-Beitrag},
   month = {Dezember},
   year = {2016},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-57&engl=0}
}
@inproceedings {INPROC-2016-53,
   author = {Dirk Pfl{\"u}ger and Miriam Mehl and Julian Valentin and Florian Lindner and David Pfander and Stefan Wagner and Daniel Graziotin and Yang Wang},
   title = {{The Scalability-Efficiency/Maintainability-Portability Trade-Off in Simulation Software Engineering: Examples and a Preliminary Systematic Literature Review}},
   booktitle = {Proceedings of 2016 Fourth International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering (SE-HPCCSE 2016), held in conjunction with SC16, Salt Lake City, Utah},
   publisher = {IEEE Computer Society; ACM},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {26--34},
   type = {Workshop-Beitrag},
   month = {November},
   year = {2016},
   doi = {10.1109/SE-HPCCSE.2016.008},
   keywords = {digital simulation; software maintenance; software portability; SLR; SSE; complex software; dynamic construction process; maintainability-portability trade-off; scalability-efficiency trade-off; simulation software engineering; systematic literature review; Computational modeling; Hardware; Mathematical model; Numerical models; Scalability; Software; Software engineering},
   language = {Englisch},
   cr-category = {D.2.0 Software Engineering General},
   ee = {https://dx.doi.org/10.1109/SE-HPCCSE.2016.008},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-53&engl=0}
}
@inproceedings {INPROC-2016-43,
   author = {Arash Bakhtiari and Dhairya Malhotra and Amir Raoofy and Miriam Mehl and Hans-Joachim Bungartz and George Biros},
   title = {{A Parallel Arbitrary-order Accurate AMR Algorithm for the Scalar Advection-diffusion Equation}},
   booktitle = {Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis},
   address = {Piscataway, NJ, USA},
   publisher = {IEEE Press},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {1--12},
   type = {Konferenz-Beitrag},
   month = {November},
   year = {2016},
   isbn = {978-1-4673-8815-3},
   keywords = {adaptive mesh refinement, semi-Lagrangian, fast multipole, parallel computing},
   language = {Englisch},
   cr-category = {J.0 Computer Applications General},
   ee = {http://dl.acm.org/citation.cfm?id=3014904.3014963},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {We present a numerical method for solving the scalar advection-diffusion equation using adaptive mesh re- finement. Our solver has three unique characteristics: (1) it supports arbitrary-order accuracy in space; (2) it allows different discretizations for the velocity and scalar advected quantity; and (3) it combines the method of characteristics with an integral equation formulation. In particular, our solver is based on a second-order accurate, unconditionally stable, semi-Lagrangian scheme combined with a spatially-adaptive Chebyshev octree for discretization. We study the convergence, single-node perfor- mance, strong scaling, and weak scaling of our scheme for several challenging flows that cannot be resolved efficiently without using high-order accurate discretizations. For example, we consider problems for which switching from 4th order to 14th order approximation results in two orders of magnitude speedups for a fixed accuracy. For our largest run, we solve a problem with one billion unknowns on a tree with maximum depth equal to 10 and 14th-order elements on 16,384 cores on the {\^a}€ťSTAMPEDE{\^a}€ť system at the Texas Advanced Computing Center.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-43&engl=0}
}
@inproceedings {INPROC-2016-20,
   author = {Michael Lahnert and Carsten Burstedde and Christian Holm and Miriam Mehl and Georg Rempfer and Florian Weik},
   title = {{Towards Lattice-Boltzmann on Dynamically Adaptive Grids -- Minimally-Invasive Grid Exchange in ESPResSo}},
   booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering},
   editor = {M. Papadrakakis and V. Papadopoulos and G. Stefanou and V. Plevris},
   publisher = {ECCOMAS},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {1--25},
   type = {Konferenz-Beitrag},
   month = {Juni},
   year = {2016},
   language = {Englisch},
   cr-category = {G.1.8 Partial Differential Equations},
   ee = {https://www.eccomas2016.org/proceedings/pdf/4659.pdf},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {We present the minimally-invasive exchange of the regular Cartesian grid in the lattice-Boltzmann solver of ESPResSo by a dynamically-adaptive octree grid. Octree grids are favoured by computer scientists over other grid types as they are very memory-efficient. In addition, they represent a natural generalisation of regular Cartesian grids, such that most discretisation details of a regular grid solver can be maintained. Optimised codes, however, require a special tree-oriented grid traversal, which typically conflicts with existing simulation codes using various iterators, some for only parts of the grid, e.g., boundaries. ESPResSo is a large software package developed for soft-matter simulations involving fluid flow, electrostatic, and electrokinetic effects, and molecular dynamics. The currently used regular Cartesian grid hinders the simulation of realistic domain sizes and significant time periods, a problem that can be solved using grid adaptivity. In a first step, we focus on the lattice-Boltzmann flow solver in ESPResSo. p4est is a grid framework, that already provides dynamically adaptive quadtree and octree grids together with high-level interfaces for flexible grid traversals with direct neighbour access in all grid components. In this paper, we first describe extensions of p4est that were necessary to fulfill certain application requirements. The second part of our work consists of the minimally-invasive changes in ESPResSo preserving the expertise accumulated in the software's implementation over years. Our numerical results demonstrate physical correctness of the implementation, good parallel scalability and low overhead of the dynamical grid adaptivity. These are prerequisites to actually profit from grid adaptivity in terms of being able to simulate larger domains over longer time periods with limited computational resources. Thus, the current status forms a solid basis for further steps such as the development of refinement criteria, the setup of more realistic application scenarios, and a GPU implementation.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-20&engl=0}
}
@inproceedings {INPROC-2015-61,
   author = {Stefan Wagner and Dirk Pfl{\"u}ger and Miriam Mehl},
   title = {{Simulation Software Engineering: Experiences and Challenges}},
   booktitle = {Proceedings of the 3rd International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering},
   publisher = {ACM},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   series = {SE-HPCCSE '15},
   pages = {1--4},
   type = {Konferenz-Beitrag},
   month = {Januar},
   year = {2015},
   doi = {10.1145/2830168.2830171},
   isbn = {978-1-4503-4012-0},
   keywords = {simulation software, software engineering},
   language = {Deutsch},
   cr-category = {D.2.0 Software Engineering General},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme;     Universit{\"a}t Stuttgart, Institut f{\"u}r Softwaretechnologie, Software Engineering},
   abstract = {Using software for large-scale simulations has become an important research method in many disciplines. With increasingly complex simulations, simulation software becomes a valuable assest. Yet, the quality of many simulation codes is worrying. In this paper, we want to collect and structure the challenges for a systematic simulation software engineering as a reference and the basis for further research. We describe our own experiences with developing simulation software and collaborating with non-computer-scientists. We complement our experienced challenges with a brief literature review. We structured the challenges for simulation software engineering into six areas: motivation and recognition; education and training; developer turnover; software length of life; verification, validation and debugging; and efficiency vs. maintainability. Overcoming these challenges needs efforts from research agencies, scientific computing researchers as well as software engineering researchers.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-61&engl=0}
}
@inproceedings {INPROC-2015-29,
   author = {Florian Lindner and Miriam Mehl and Klaudius Scheufele and Benjamin Uekermann},
   title = {{A Comparison of various Quasi-Newton Schemes for Partitioned Fluid-Structure Interaction}},
   booktitle = {Coupled Problems},
   publisher = {ECCOMAS},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Januar},
   year = {2015},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-29&engl=0}
}
@inproceedings {INPROC-2014-84,
   author = {Benjamin Uekermann and Juan Carlos Cajas and Bernhard Gatzhammer and Guillaume Houzeaux and Miriam Mehl and Mariano Vazquez},
   title = {{Towards Partitioned Fluid-Structure Interaction on Massively Parallel Systems}},
   booktitle = {Proceedings of WCCM XI / ECCM V / ECFD VI},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Juli},
   year = {2014},
   language = {Deutsch},
   cr-category = {J.2 Physical Sciences and Engineering},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-84&engl=0}
}
@inproceedings {INPROC-2014-83,
   author = {Benjamin Uekermann and Bernhard Gatzhammer and Miriam Mehl},
   title = {{Coupling Algorithms for Partitioned Multi-Physics Simulations}},
   booktitle = {Proceedings of the Informatik 2014 Conference},
   publisher = {GI},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {September},
   year = {2014},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-83&engl=0}
}
@inproceedings {INPROC-2013-63,
   author = {Benjamin Uekermann and Hans-Joachim Bungartz and Bernhard Gatzhammer and Miriam Mehl},
   title = {{A Parallel, Black-Box Coupling for Fluid-Structure Interaction}},
   booktitle = {Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2013},
   editor = {Sergio Idelsohn and Manolis Papadrakakis and Bernhard Schrefler},
   address = {Stanta, Eulalia; Ibiza, Spain},
   publisher = {//congress.cimne.com/coupled2013/proceedings/)},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Januar},
   year = {2013},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-63&engl=0}
}
@inproceedings {INPROC-2012-51,
   author = {Janos Benk and Michael Ulbrich and Miriam Mehl},
   title = {{The Nitsche Method of the Navier-Stokes Equations for Immersed and Moving Boundaries}},
   booktitle = {In Seventh International Conference on Computational Fluid Dynamics},
   address = {Hawaii},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Juli},
   year = {2012},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-51&engl=0}
}
@inproceedings {INPROC-2012-50,
   author = {Michael Lieb and Miriam Mehl and Tobias Neckel and Kristof Unterweger},
   title = {{HPC Fluid Flow Simulations in Porous Media Geometries}},
   booktitle = {Seventh International Conference on Computational Fluid Dynamics},
   address = {NASA , Ames},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Juli},
   year = {2012},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-50&engl=0}
}
@inproceedings {INPROC-2011-89,
   author = {Janos Benk and Miriam Mehl and Michael Ulbrich},
   title = {{Sundance PDE Solvers on Cartesian Fixed Grids in Complex and Variable Geometries}},
   booktitle = {Proceedinggs of the ECCOMAS Thematic Conference CFD \& Optimization, Antlya, Turkey, May 23-25, 2011},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Mai},
   year = {2011},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-89&engl=0}
}
@inproceedings {INPROC-2011-88,
   author = {Bernhard Gatzhammer and Miriam Mehl and Tobias Neckel},
   title = {{Partitioned Fluid-Structure Interaction Coupling Methods for Black-Box Solvers}},
   booktitle = {2nd International Conference on Computational Engineering (ICCE 2011)},
   editor = {Marek Behr and Jens Lang and Ernst Rank and Michael Sch{\"a}fer},
   address = {Darmstadt},
   publisher = {typographics GmbH},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {76--77},
   type = {Konferenz-Beitrag},
   month = {Oktober},
   year = {2011},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-88&engl=0}
}
@inproceedings {INPROC-2010-126,
   author = {Miriam Mehl and Bernhard Gatzhammer and Tobias Neckel},
   title = {{Partitioned Fluid-Structure Interaction Simulations Using a Hierarchical Cartesian Flow Solver}},
   booktitle = {Prooceddings of the Fifth European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, 14th-17th June 2010, Lissabon},
   address = {Lissabon},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Januar},
   year = {2010},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-126&engl=0}
}
@inproceedings {INPROC-2010-125,
   author = {Tobias Neckel and Miriam Mehl and Christoph Zenger},
   title = {{Enhanced Divergence-Free Elements for Efficient Incompressible Flow Simulations in the PDE Framework Peano}},
   booktitle = {Prooceedings of the Fifth European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, 14th-17th June 2010, Lissabon},
   address = {Lissabon},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Januar},
   year = {2010},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-125&engl=0}
}
@inproceedings {INPROC-2009-143,
   author = {Hans-Joachim Bungartz and Miriam Mehl and Tobias Neckel},
   title = {{Steady-state Flow Simulations using Exact Jacobians on Cartesian Grids}},
   booktitle = {Proceedings of the 1st African Conference on Computational Mechanics (Africomp)},
   editor = {A. G. Malan and P. Nithiarasu and O. Oxtoby},
   address = {Sun City, South Africa},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Januar},
   year = {2009},
   language = {Englisch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-143&engl=0}
}
@inproceedings {INPROC-2009-142,
   author = {Bernhard Gatzhammer and Miriam Mehl and Tobias Weinzierl},
   title = {{A Coupling Tool for the Partitioned Simulation of Fluid-Structure Interactions}},
   booktitle = {Computational Methods in Marine Engineering},
   editor = {T. Kvamsdal and B. Pettersen and P. Bergan and E. Onate and J. Garcia},
   address = {Trondheim},
   publisher = {CIMNE},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   pages = {147--150},
   type = {Konferenz-Beitrag},
   month = {Juni},
   year = {2009},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-142&engl=0}
}
@inproceedings {INPROC-2008-153,
   author = {Christoph Zenger and Michael Bader and Miriam Mehl},
   title = {{Cache oblivious Memory Management for PDE-solvers}},
   booktitle = {Schnelle L{\"o}ser f{\"u}r partielle Differentialgleichungen},
   editor = {Randolph E. Banks},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   series = {Oberwolfach Reports},
   volume = {23},
   type = {Konferenz-Beitrag},
   month = {Januar},
   year = {2008},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2008-153&engl=0}
}
@inproceedings {INPROC-2008-152,
   author = {Miriam Mehl and Markus Brenk and Ioan Lucian Muntean and Tobias Neckel and Tobias Weinzierl},
   title = {{A Modular and Efficient Simulation Environment for Fluid-Structure Interactions with Large Domain Deformation}},
   booktitle = {Proceedings of the Sixth International Conference on Engineering Computational Technology, Athens, September 2008},
   editor = {M. Papadrakakis and B. H. V. Topping},
   address = {Kippen, Strirlingshire, United Kingdom},
   publisher = {Civil-Comp Press},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {September},
   year = {2008},
   isbn = {9781905088263},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2008-152&engl=0}
}
@inproceedings {INPROC-2008-151,
   author = {Tobias Neckel and Miriam Mehl and Hans-Joachim Bungartz and Takayuki Aoki},
   title = {{CFD simulations using an AMR-like approach in the PDE framework Peano}},
   booktitle = {CFD2008},
   address = {Tokyo},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Dezember},
   year = {2008},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2008-151&engl=0}
}
@inproceedings {INPROC-2007-145,
   author = {Markus Brenk and Hans-Joachim Bungartz and Miriam Mehl and Ioan Lucian Muntean and Tobias Neckel and Tobias Weinzierl},
   title = {{A coupling environment for fluid-structure interactions on Cartesian grids}},
   booktitle = {International Conference on Computational Methods in Marine Engineering},
   editor = {P. Bergan and J. Garcia and E. Onate and T. Kvamsdal},
   address = {Barcelona},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Juni},
   year = {2007},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2007-145&engl=0}
}
@inproceedings {INPROC-2007-144,
   author = {Miriam Mehl and Markus Brenk and Ioan Lucian Muntean and Tobias Neckel and Tobias Weinzierl},
   title = {{Benefits of Structured Cartesian Gris for the Simulation of Fluid-Structure Interactions}},
   booktitle = {Proceedings of the Third Asian-Pacific Congress on Computational Mechanics, APCOM 07},
   editor = {G. Yagawa and V.P. Iu and K. Kashiyama and N. Miyazaki and E. Arantes e Oliveira and S. Valliappan and T. Yabe and M.W. Yuan and S. Yoshimura},
   address = {Kyoto, Japan},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Dezember},
   year = {2007},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2007-144&engl=0}
}
@inproceedings {INPROC-2006-112,
   author = {Hans-Joachim Bungartz and Miriam Mehl},
   title = {{CARTESIAN DISCRETISATIONS FOR FLUID-STRUCTURE INTERACTION - EFFICIENT FLOW SOLVER}},
   booktitle = {Proceedings ECCOMAS CFD 2006, European Conference on Computational Fluid Dynamics, Egmond an Zee, September 5th-8th 2006},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Januar},
   year = {2006},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2006-112&engl=0}
}
@inproceedings {INPROC-2005-131,
   author = {Markus Brenk and Hans-Joachim Bungartz and Miriam Mehl and Ralf-Peter Mundani and Alexander D{\"u}ster and Dominik Scholz},
   title = {{Efficient Interface Treatment for Fluid-Structure Interaction on Cartesian Grids}},
   booktitle = {Proc. of the ECCOMAS Thematic Conf. on Comp. Methods for Coupled Problems in Science and Engineering},
   publisher = {Sonstige},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Konferenz-Beitrag},
   month = {Januar},
   year = {2005},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2005-131&engl=0}
}
@inproceedings {INPROC-2005-130,
   author = {Miriam Mehl and Christoph Zenger},
   title = {{Cache-oblivious parallel multigrid solvers on adaptively refined grids}},
   booktitle = {Proceedings of the 18th Symposium Simulationstechnique (ASIM 2005)},
   editor = {Frank H{\"u}lsemann and Markus Kowarschik and Ulrich R{\"u}de},
   address = {Erlangen},
   publisher = {SCS European Publishing House},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   series = {Fortschritte in der Simulationstechnik - Frontiers in Simulation},
   volume = {15},
   pages = {173--179},
   type = {Konferenz-Beitrag},
   month = {September},
   year = {2005},
   isbn = {3-936150-41-9},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2005-130&engl=0}
}
@article {ART-2020-09,
   author = {Alireza Naseri and Amin Totounferoush and Ignacio Gonzales and Miriam Mehl and Carlos David Perez-Segarra},
   title = {{A scalable framework for the partitioned solution of fluid–structure interaction problems}},
   journal = {Computational Mechanics},
   publisher = {Springer Verlag},
   volume = {66},
   pages = {471--489},
   type = {Artikel in Zeitschrift},
   month = {Mai},
   year = {2020},
   isbn = {https://doi.org/10.1007/s00466-020-01860-y},
   keywords = {Fluid-Structure Interaction; Partitioned Method; Multi-Code Coupling; Scalability; HPC},
   language = {Englisch},
   cr-category = {J.2 Physical Sciences and Engineering,     J.3 Life and Medical Sciences,     I.6.3 Simulation and Modeling Applications},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {In this work, we present a scalable and efficient parallel solver for the partitioned solution of fluid–structure interaction problems through multi-code coupling. Two instances of an in-house parallel software, TermoFluids, are used to solve the fluid and the structural sub-problems, coupled together on the interface via the preCICE coupling library. For fluid flow, the Arbitrary Lagrangian–Eulerian form of the Navier–Stokes equations is solved on an unstructured conforming grid using a second-order finite-volume discretization. A parallel dynamic mesh method for unstructured meshes is used to track the moving boundary. For the structural problem, the nonlinear elastodynamics equations are solved on an unstructured grid using a second-order finite-volume method. A semi-implicit FSI coupling method is used which segregates the fluid pressure term and couples it strongly to the structure, while the remaining fluid terms and the geometrical nonlinearities are only loosely coupled. A robust and advanced multi-vector quasi-Newton method is used for the coupling iterations between the solvers. Both the fluid and the structural solver use distributed-memory parallelism. The intra-solver communication required for data update in the solution process is carried out using non-blocking point-to-point communicators. The inter-code communication is fully parallel and point-to-point, avoiding any central communication unit. Inside each single-physics solver, the load is balanced by dividing the computational domain into fairly equal blocks for each process. Additionally, a load balancing model is used at the inter-code level to minimize the overall idle time of the processes. Two practical test cases in the context of hemodynamics are studied, demonstrating the accuracy and computational efficiency of the coupled solver. Strong scalability test results show a parallel efficiency of 83\% on 10,080 CPU cores.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2020-09&engl=0}
}
@article {ART-2020-08,
   author = {Shashank Subramanian and Klaudius Scheufele and Miriam Mehl and George Biros},
   title = {{Where did the tumor start? An inverse solver with sparse localization for tumor growth models}},
   journal = {Inverse Problems},
   publisher = {IOP Publisher},
   volume = {36},
   number = {4},
   type = {Artikel in Zeitschrift},
   month = {Februar},
   year = {2020},
   isbn = {10.1088/1361-6420/ab649c},
   language = {Englisch},
   cr-category = {G.1.2 Numerical Analysis Approximation,     G.1.6 Numerical Analysis Optimization,     G.1.8 Partial Differential Equations,     I.4 Image Processing and Computer Vision,     I.6.8 Types of Simulation,     J.3 Life and Medical Sciences},
   ee = {https://iopscience.iop.org/article/10.1088/1361-6420/ab649c,     https://arxiv.org/abs/1907.06564},
   contact = {miriam.mehl@ipvs.uni-stuttgart.de},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {We present a numerical scheme for solving an inverse problem for parameter estimation in tumor growth models for glioblastomas, a form of aggressive primary brain tumor. The growth model is a reaction–diffusion partial differential equation (PDE) for the tumor concentration. We use a PDE-constrained optimization formulation for the inverse problem. The unknown parameters are the reaction coefficient (proliferation), the diffusion coefficient (infiltration), and the initial condition field for the tumor PDE. Segmentation of magnetic resonance imaging (MRI) scans drive the inverse problem where segmented tumor regions serve as partial observations of the tumor concentration. Like most cases in clinical practice, we use data from a single time snapshot. Moreover, the precise time relative to the initiation of the tumor is unknown, which poses an additional difficulty for inversion. We perform a frozen-coefficient spectral analysis and show that the inverse problem is severely ill-posed. We introduce a biophysically motivated regularization on the structure and magnitude of the tumor initial condition. In particular, we assume that the tumor starts at a few locations (enforced with a sparsity constraint on the initial condition of the tumor) and that the initial condition magnitude in the maximum norm is equal to one. We solve the resulting optimization problem using an inexact quasi-Newton method combined with a compressive sampling algorithm for the sparsity constraint. Our implementation uses PETSc and AccFFT libraries. We conduct numerical experiments on synthetic and clinical images to highlight the improved performance of our solver over a previously existing solver that uses standard two-norm regularization for the calibration parameters. The existing solver is unable to localize the initial condition. Our new solver can localize the initial condition and recover infiltration and proliferation. In clinical datasets (for which the ground truth is unknown), our solver results in qualitatively different solutions compared to the two-norm regularized solver.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2020-08&engl=0}
}
@article {ART-2019-06,
   author = {Miriam Mehl and Michael Lahnert},
   title = {{Adaptive grid implementation for parallel continuum mechanics methods in particle simulations}},
   journal = {The European Physical Journal Special Topics},
   editor = {Christian Holm and Thomas Ertl and Siegfried Schmauder and Johannes K{\"a}stner and Joachim Gross},
   publisher = {Springer Berlin Heidelberg},
   volume = {227},
   number = {14},
   pages = {1757--1778},
   type = {Artikel in Zeitschrift},
   month = {M{\"a}rz},
   year = {2019},
   doi = {10.1140/epjst/e2019-800161-5},
   language = {Deutsch},
   cr-category = {G.0 Mathematics of Computing General},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {In this tutorial review paper, we present our minimally invasive approach for integrating dynamically adaptive tree-structured grids into existing simulation software that has been developed for regular Cartesian grids. We introduce different physical models that we target and that span a wide range of typical simulation characteristics -- from grid-based Lattice-Boltzmann, finite volume and finite difference discretized models to particle-based molecular dynamics models. We derive the respective typical data access requirements and extensions of the algorithms to adaptively refined grids along with possible grid adaptivity criteria. In addition, after introducing basics of tree-structured adaptively refined grids, we present the adaptive grid framework p4est and our enhancement of p4est in order to provide a grid and partitioning infrastructure that can easily be used in existing simulation codes. Finally, we explain how such a grid infrastructure can be integrated into regular grid codes in general in three major steps and how we integrated p4est in the soft matter simulation package ESPResSo in particular. A summary of results fro m previously published performance and scalability studies together with new results for more realistic coupled simulation scenarios shows the efficiency and validity of the resulting new version of ESPResSo.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2019-06&engl=0}
}
@article {ART-2019-01,
   author = {Klaudius Scheufele and Andreas Mang and Amir Gholami and Christos Davatzikos and George Biros and Miriam Mehl},
   title = {{Coupling Brain-Tumor Biophysical Models and Diffeomorphic Image Registration}},
   journal = {Computer Methods in Applied Mechanics and Engineering},
   editor = {Elsevier},
   publisher = {Elsevier},
   pages = {1--34},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2019},
   doi = {https://doi.org/10.1016/j.cma.2018.12.008},
   keywords = {biophysically constrained diffeomorphic image registration; tumor growth; atlas registration; adjoint-based methods; parallel algorithms},
   language = {Englisch},
   cr-category = {G.1.6 Numerical Analysis Optimization,     G.1.8 Partial Differential Equations,     J.3 Life and Medical Sciences},
   ee = {https://arxiv.org/abs/1710.06420},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {We present SIBIA (Scalable Integrated Biophysics-based Image Analysis), a framework for joint image registration and biophysical inversion and we apply it to analyse MR images of glioblastomas (primary brain tumors). We have two applications in mind. The first one is normal-to-abnormal image registration in the presence of tumor-induced topology differences. The second one is biophysical inversion based on single-time patient data. The underlying optimization problem is highly non-linear and non-convex and has not been solved before with a gradient-based approach. Given the segmentation of a normal brain MRI and the segmentation of a cancer patient MRI, we determine tumor growth parameters and a registration map so that if we ``grow a tumor'' (using our tumor model) in the normal brain and then register it to the patient image, then the registration mismatch is as small as possible. This ``$\backslash$emph{coupled problem}'' two-way couples the biophysical inversion and the registration problem. In the image registration step we solve a large-deformation diffeomorphic registration problem parameterized by an Eulerian velocity field. In the biophysical inversion step we estimate parameters in a reaction-diffusion tumor growth model that is formulated as a partial differential equation (PDE). In SIBIA, we couple these two sub-components in an iterative manner. We first presented the components of SIBIA in ``Gholami et al, Framework for Scalable Biophysics-based Image Analysis, IEEE/ACM Proceedings of the SC2017'', in which we derived parallel distributed memory algorithms and software modules for the decoupled registration and biophysical inverse problems. In this paper, our contributions are the introduction of a PDE-constrained optimization formulation of the coupled problem, and the derivation of a Picard iterative solution scheme. We perform extensive tests to experimentally assess the performance of our method on synthetic and clinical datasets. We demonstrate the convergence of the SIBIA optimization solver in different usage scenarios. We demonstrate that using SIBIA, we can accurately solve the coupled problem in three dimensions (256^3 resolution) in a few minutes using 11 dual-x86 nodes.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2019-01&engl=0}
}
@article {ART-2018-08,
   author = {Chris P. Bradley and Nehzat Emamy and Thomas Ertl and Dominik G{\"o}ddeke and Andreas Hessenthaler and Thomas Klotz and Aaron Kr{\"a}mer and Michael Krone and Benjamin Maier and Miriam Mehl and Tobias Rau and Oliver R{\"o}hrle},
   title = {{Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems}},
   journal = {Frontiers in Physiology},
   publisher = {frontiers},
   volume = {9},
   pages = {816--816},
   type = {Artikel in Zeitschrift},
   month = {Juli},
   year = {2018},
   doi = {10.3389/fphys.2018.00816},
   language = {Englisch},
   cr-category = {G.0 Mathematics of Computing General},
   ee = {https://www.frontiersin.org/article/10.3389/fphys.2018.00816},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2018-08&engl=0}
}
@article {ART-2017-11,
   author = {Klaudius Scheufele and Miriam Mehl},
   title = {{ROBUST MULTI-SECANT QUASI-NEWTON VARIANTS FOR PARALLEL FLUID-STRUCTURE SIMULATIONS—AND OTHER MULTIPHYSICS APPLICATIONS}},
   journal = {Siam Journal on Scientific Computing, Volume 39, Issue 5},
   editor = {SIAM},
   publisher = {SIAM},
   volume = {39},
   number = {5},
   pages = {404--433},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2017},
   isbn = {10.1137/16M1082020},
   keywords = {partitioned multiphysics; nonlinear fixed-point solver; quasi-Newton, fluid-structure interaction},
   language = {Englisch},
   cr-category = {G.4 Mathematical Software,     G.1.6 Numerical Analysis Optimization},
   ee = {ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/ART-2017-11/ART-2017-11.pdf},
   contact = {klaudius.scheufele@ipvs.uni-stuttgart.de},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2017-11&engl=0}
}
@article {ART-2016-02,
   author = {Hans-Joachim Bungartz and Florian Lindner and Bernhard Gatzhammer and Miriam Mehl and Klaudius Scheufele and Alexander Shukaev and Benjamin Uekermann},
   title = {{preCICE – A Fully Parallel Library for Multi-Physics Surface Coupling}},
   journal = {Computers \& Fluids},
   publisher = {Elsevier},
   pages = {1--1},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2016},
   doi = {http://dx.doi.org/10.1016/j.compfluid.2016.04.003},
   issn = {0045-7930},
   keywords = {partitioned multi-physics; strong coupling; non-matching grids; inter-code communication; quasi-Newton; radial basis functions; high performance computing},
   language = {Deutsch},
   cr-category = {G.1.0 Numerical Analysis General,     D.0 Software General},
   ee = {http://www.sciencedirect.com/science/article/pii/S0045793016300974},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {Abstract In the emerging field of multi-physics simulations, we often face the challenge to establish new connections between physical fields, to add additional aspects to existing models, or to exchange a solver for one of the involved physical fields. If in such cases a fast prototyping of a coupled simulation environment is required, a partitioned setup using existing codes for each physical field is the optimal choice. As accurate models require also accurate numerics, multi-physics simulations typically use very high grid resolutions and, accordingly, are run on massively parallel computers. Here, we face the challenge to combine flexibility with parallel scalability and hardware efficiency. In this paper, we present the coupling tool preCICE which offers the complete coupling functionality required for a fast development of a multi-physics environment using existing, possibly black-box solvers. We hereby restrict ourselves to bidirectional surface coupling which is too expensive to be done via file communication, but in contrast to volume coupling still a candidate for distributed memory parallelism between the involved solvers. The paper gives an overview of the numerical functionalities implemented in preCICE as well as the user interfaces, i.e., the application programming interface and configuration options. Our numerical examples and the list of different open-source and commercial codes that have already been used with preCICE in coupled simulations show the high flexibility, the correctness, and the high performance and parallel scalability of coupled simulations with preCICE as the coupling unit.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-02&engl=0}
}
@article {ART-2016-01,
   author = {Miriam Mehl and Benjamin Uekermann and Hester Bijl and David Blom and Bernhard Gatzhammer and Alexander van Zuijlen},
   title = {{Parallel coupling numerics for partitioned fluid–structure interaction simulations}},
   journal = {Computers \& Mathematics with Applications},
   publisher = {Elsevier},
   volume = {71},
   number = {4},
   pages = {869--891},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2016},
   issn = {0898-1221},
   doi = {http://dx.doi.org/10.1016/j.camwa.2015.12.025},
   keywords = {Fluid–structure interaction, partitioned simulation, parallel coupling methods, quasi-Newton, high performance computing},
   language = {Deutsch},
   cr-category = {J.2 Physical Sciences and Engineering},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {Within the last decade, very sophisticated numerical methods for the iterative and partitioned solution of fluid-structure interaction problems have been developed that allow for high accuracy and very complex scenarios. The combination of these two aspects {\^a}€“ accuracy and com- plexity {\^a}€“ demands very high computational grid resolutions and, thus, high performance computing methods designed for massively parallel hardware architectures. For those architectures, currently used coupling method that mainly work with a staggered execution of the fluid and structure solver, i.e., the execution of one solver after the other in every outer iteration, lead to severe load imbal- ances: if the flow solver, e.g., scales on a very large number of processors but the structural solver does not due to its limited amount of data and required operations, almost all processors assigned to the coupled simulations are idle while the structure solver executes. We propose two new iterative coupling methods that allow for simultaneous execution of flow and structure solvers. In both cases, we show that pure fixed-point iterations based on the parallel execution of the solvers do not lead to good results, but the combination of parallel solver execution and so-called quasi-Newton methods yields very efficient and robust methods. Those methods are known to be very efficient also for the stabilization of critical scenarios solved with the standard staggered solver execution. We demon- strate the competitive convergence of our methods for various established benchmark scenarios. Both methods are perfectly suited for use with black-box solvers because the quasi-Newton approach uses solely in- and output information of the solvers to approximate the effect of the unknown Jacobians that would be required in a standard Newton solver.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-01&engl=0}
}
@article {ART-2015-08,
   author = {Hans-Joachim Bungartz and Florian Lindner and Miriam Mehl and Benjamin Uekermann},
   title = {{A plug-and-play coupling approach for parallel multi-field simulations}},
   journal = {Computational Mechanics},
   address = {Berlin, Heidelberg, New York},
   publisher = {Springer},
   volume = {55},
   number = {6},
   pages = {1119--1129},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2015},
   isbn = {0178-7675 (ISSN print)},
   isbn = {1432-0924 (ISSN online)},
   isbn = {10.1007/s00466-014-1113-2 (DOI)},
   language = {Englisch},
   cr-category = {J.2 Physical Sciences and Engineering},
   ee = {ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/ART-2015-08/ART-2015-08.pdf,     http://link.springer.com/article/10.1007/s00466-014-1113-2},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {For multi-field simulations involving a larger number of different physical fields and in cases where the involved fields or simulation codes change due to new modelling insigts, e.g., flexible and robust partitioned coupling schemes are an important prerequisite to keep time-to-solution within reasonable limits. They allow for a fast, almost plug-and-play combination of existing established codes to the respective multi-field simulation environment. In this paper, we study a class of coupling approaches that we originally introduced in order to improve the parallel scalability of partitioned simulations. Due to the symmetric structure of these coupling methods and the use of 'long' vectors of coupling data comprising the input and output of all involved codes at a time, they turn out to be particularly suited also for simulations involving more than two coupled fields. As standard two-field coupling schemes are not suited for such cases as shown in our numerical results, this allows the simulation of a new range of applications in a partitioned way.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2015-08&engl=0}
}
@article {ART-2014-16,
   author = {Bijl Hester and Thomas Ertl and Miriam Mehl and Sabine Roller and D{\"o}rte Sternel},
   title = {{ExaFSA -- Exascale Simulation of Fluid-Structure-Acoustics Interactions}},
   journal = {inSiDE},
   editor = {A. Bode and Th. Lippert and M. M. Resch},
   publisher = {Sonstige},
   volume = {12},
   number = {1},
   pages = {78--81},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2014},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2014-16&engl=0}
}
@article {ART-2012-22,
   author = {Philipp Neumann and Hans-Joachim Bungartz and Miriam Mehl and Tobias Neckel and Tobias Weinzierl},
   title = {{A Coupled Approach for Fluid Dynamic Problems Using the PDE Framework Peano}},
   journal = {Commun. Comput. Phys.},
   publisher = {Global Science Press},
   volume = {12},
   number = {1},
   pages = {65--84},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2012},
   issn = {1991-7120},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2012-22&engl=0}
}
@article {ART-2011-25,
   author = {Bungartz Hans-Joachim and Gatzhammer Bernhard and Lieb Michael and Miriam Mehl and Tobias Neckel},
   title = {{Towards Multi-Phase Flow Simulations in the PDE Framework Peano}},
   journal = {Computational Mechanics},
   publisher = {Springer},
   volume = {48},
   number = {3},
   pages = {365--376},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2011},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2011-25&engl=0}
}
@article {ART-2011-24,
   author = {Tobias Weinzierl and Miriam Mehl},
   title = {{Peano -- A Traversal and Storage Scheme for Octree-Like Adaptive Cartesian Multiscale Grids}},
   journal = {SIAM Journal on Scientific Computing},
   editor = {R. Tuminaro and M. Benzi and X.-C. Cai and I. Duff and H. Elman and R. Freund and K. Jordan and T. Kelley and D. Keyes and M. Kilmer and S. Leyffer and T. Manteuffel and S. McCormick and D. Silvester and H. Walker and C. Woodward and I. Yavneh},
   publisher = {SIAM},
   volume = {33},
   number = {5},
   pages = {2732--2760},
   type = {Artikel in Zeitschrift},
   month = {Oktober},
   year = {2011},
   issn = {1064-8275},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2011-24&engl=0}
}
@article {ART-2010-21,
   author = {Miriam Mehl and Tobias Neckel and Philipp Neumann},
   title = {{Navier-Stokes and Lattice-Boltzmann on octree-like grids in the 3 Peano framework}},
   journal = {Int. J. Numer. Meth. Fluids},
   publisher = {Wiley \& Sons Ltd.},
   volume = {65},
   number = {1},
   pages = {67--86},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2010},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2010-21&engl=0}
}
@article {ART-2010-20,
   author = {Hans-Joachim Bungartz and Miriam Mehl and Tobias Neckel and Tobias Weinzierl},
   title = {{The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids}},
   journal = {Computational Mechanics},
   address = {Berlin, Heidelberg,},
   publisher = {Springer},
   volume = {46},
   number = {1},
   pages = {103--114},
   type = {Artikel in Zeitschrift},
   month = {Juni},
   year = {2010},
   issn = {1432-0924},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2010-20&engl=0}
}
@article {ART-2008-29,
   author = {Markus Brenk and Hans-Joachim Bungartz and Miriam Mehl and Ioan Lucian Muntean and Tobias Neckel and Klaus Daubner},
   title = {{An Eulerian Approach for Partitioned Fluid-structure Simulations on Cartesian Grids}},
   journal = {Computational Mechanics},
   address = {Berlin, Heidelberg,},
   publisher = {Springer-Verlag},
   volume = {43},
   number = {1},
   pages = {115--124},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2008},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2008-29&engl=0}
}
@article {ART-2008-28,
   author = {Markus Brenk and Hans-Joachim Bungartz and Miriam Mehl and Ioan Lucian Muntean and Tobias Neckel and Tobias Weinzierl},
   title = {{Numerical Simulation of Particle Transport in a Drift Ratchet}},
   journal = {SIAM Journal of Scientific Computing},
   editor = {Chris Johnson and David Keyes and Ulrich R{\"u}de},
   publisher = {SIAM},
   volume = {30},
   number = {6},
   pages = {2777--2798},
   type = {Artikel in Zeitschrift},
   month = {Oktober},
   year = {2008},
   issn = {1064-8275},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2008-28&engl=0}
}
@article {ART-2006-22,
   author = {Miriam Mehl and Tobias Weinzierl and Christoph Zenger},
   title = {{A cache-oblivious self-adaptive full multigrid method}},
   journal = {Numerical Linear Algebra with Applications},
   editor = {Robert D. Falgout},
   publisher = {Wiley Interscience},
   volume = {13},
   number = {2-3},
   pages = {275--291},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2006},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2006-22&engl=0}
}
@article {ART-2006-21,
   author = {Frank G{\"u}nther and Miriam Mehl and Markus P{\"o}gl and Christoph Zenger},
   title = {{A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves}},
   journal = {SIAM Journal on Scientific Computing},
   publisher = {SIAM},
   volume = {28},
   number = {5},
   pages = {1634--1650},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2006},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2006-21&engl=0}
}
@article {ART-2001-22,
   author = {Martin Kuehn and Miriam Mehl and Martina Hausner and Hans-Joachim Bungartz and Stefan Wuertz},
   title = {{Time-resolved Study of Biofilm Architecture and Transport Processes Using Experimental and Simulation Techniques: The Role of EPS}},
   journal = {Water Science \& Technology},
   publisher = {IWA Publishing},
   volume = {43},
   number = {6},
   pages = {143--151},
   type = {Artikel in Zeitschrift},
   month = {Januar},
   year = {2001},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2001-22&engl=0}
}
@article {ART-2000-23,
   author = {Hans-Joachim Bungartz and Martin Kuehn and Miriam Mehl and M. Hausner and S. Wuertz},
   title = {{Fluid flow and transport in defined biofilms: Experiments and numerical simulations on a microscale}},
   journal = {Water Science \& Technology},
   publisher = {IWA Publishing},
   volume = {41},
   number = {4-5},
   pages = {331--338},
   type = {Artikel in Zeitschrift},
   month = {Juni},
   year = {2000},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2000-23&engl=0}
}
@inbook {INBOOK-2017-06,
   author = {Steffen Hirschmann and Malte Brunn and Michael Lahnert and Colin W. Glass and Miriam Mehl and Dirk Pfl{\"u}ger},
   title = {{Load balancing with p4est for Short-Range Molecular Dynamics with ESPResSo}},
   series = {Advances in Parallel Computing},
   publisher = {IOS Press},
   volume = {32},
   pages = {455--464},
   type = {Beitrag in Buch},
   month = {September},
   year = {2017},
   doi = {10.3233/978-1-61499-843-3-455},
   language = {Englisch},
   cr-category = {G.0 Mathematics of Computing General},
   ee = {ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INBOOK-2017-06/INBOOK-2017-06.pdf},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2017-06&engl=0}
}
@inbook {INBOOK-2015-07,
   author = {David Blom and Florian Lindner and Miriam Mehl and Klaudius Scheufele and Alexander van Zuijlen},
   title = {{A Review on Fast Quasi-Newton and Accelerated Fixed Point Iterations for Partitioned Fluid-Structure Interaction Simulation}},
   series = {Advances in Computational Fluid-Structure Interaction},
   publisher = {Springer International Publishing},
   series = {Modeling and Simulation in Science, Engineering and Technology},
   pages = {1--12},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2015},
   isbn = {978-3-319-40827-9},
   isbn = {978-3-319-40825-5},
   language = {Englisch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {The partitioned simulation of fluid{\^a}€“structure interactions offers great flexibility in terms of exchanging flow and structure solver and using existing established codes. However, it often suffers from slow convergence and limited parallel scalability. Quasi-Newton or accelerated fixed-point iterations are a very efficient way to solve the convergence issue. At the same time, they stabilize and speed up not only the standard staggered fluid{\^a}€“structure coupling iterations, but also the variant with simultaneous execution of flow and structure solver that is fairly inefficient if no acceleration methods for the underlying fixed-point iteration are used. In this chapter, we present a review on combinations of iteration patterns (parallel and staggered) and of quasi-Newton methods and compare their suitability in terms of convergence speed, robustness, and parallel scalability. Some of these variants use the so-called manifold mapping that yields an additional speedup by using an approach that can be interpreted as a generalization of the multi-level idea.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2015-07&engl=0}
}
@inbook {INBOOK-2015-05,
   author = {David Blom and Benjamin Uekermann and Miriam Mehl and Alexander van Zuijlen and Hester Bijl},
   title = {{Multi-Level Acceleration of Parallel Coupled Partitioned Fluid-Structure Interaction with Manifold Mapping}},
   series = {Recent Trends in Computational Engineering},
   address = {Berlin, Heidelberg, New York},
   publisher = {Springer},
   series = {Lecture Notes in Computational Science and Engineering},
   volume = {105},
   pages = {135--150},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2015},
   isbn = {ISBN 978-3-319-22996-6},
   language = {Englisch},
   cr-category = {J.2 Physical Sciences and Engineering},
   ee = {http://www.springer.com/us/book/9783319229966},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {Strongly coupled fluid-structure interaction simulations often suffer from slow convergence, limited parallel scalability or difficulties in using black-box solvers. As partitioned simulations still play an important role in cases where new combinations of models, discretizations and codes have to be tested in an easy and fast way, we propose a combination of a parallel black-box coupling with a manifold mapping algorithm as an acceleration method. In this approach, we combine a com- putationally inexpensive low-fidelity FSI model with a high-fidelity FSI model to reduce the number of coupling iterations of the high fidelity FSI model. Information from previous time steps is taken into account with a secant update step similar to the Broyden update. The used black-box approach is applied for an incompressible laminar flow over a fixed cylinder with an attached flexible flap and a wave prop- agation in a three-dimensional elastic tube problem. A reduction of approximately 55 \% in terms of high fidelity iterations is achieved compared to the Anderson mix- ing method if the fluid and the structure solvers are executed in parallel.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2015-05&engl=0}
}
@inbook {INBOOK-2015-04,
   author = {Hans-Joachim Bungartz and Harald Klimach and Verena Krupp and Florian Lindner and Miriam Mehl and Sabine Roller and Benjamin Uekermann},
   title = {{Fluid-Acoustics Interaction on Massively Parallel Systems}},
   series = {Recent Trends in Computational Engineering},
   address = {Berlin, Heidelberg, New York},
   publisher = {Springer},
   series = {Lecture Notes in Computational Science and Engineering},
   volume = {105},
   pages = {151--165},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2015},
   isbn = {ISBN 978-3-319-22996-6},
   language = {Englisch},
   cr-category = {J.2 Physical Sciences and Engineering},
   ee = {http://www.springer.com/us/book/9783319229966},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {To simulate fluid-acoustic interaction, we couple inviscid Euler equations in the near-field, which is relevant for noise generation, to linearized Euler equations in the far-field. This allows us to separate the critical scales and treat each domain with an individual discretization. Both fields are computed by the high-order discontinuous Galerkin solver Ateles, while we couple the solvers at the interface by the library preCICE. We discuss a detailed performance analysis of the coupled simulation on massively parallel systems. Furthermore, to show the full potential of our approach, we simulate a flow around a sphere.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2015-04&engl=0}
}
@inbook {INBOOK-2011-02,
   author = {Michael Bader and Hans-Joachim Bungartz and Miriam Mehl},
   title = {{Space-Filling Curves}},
   series = {Encyclopedia of Parallel Computing},
   address = {Berlin, Heidelberg, New York},
   publisher = {Springer},
   volume = {19},
   pages = {1862--1867},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2011},
   doi = {10.1007/978-0-387-09766-4_145},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2011-02&engl=0}
}
@inbook {INBOOK-2010-08,
   author = {Atanas Atanasov and Hans-Joachim Bungartz and Jerome Frisch and Miriam Mehl and Ralf-Peter Mundani and Ernst Rank and Christoph van Treek},
   title = {{High Performance Computing in Science and Engineering, Garching 2009}},
   series = {Computational Steering of Complex Flow Simulations},
   address = {Berlin, Heidelberg,},
   publisher = {Springer},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2010},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2010-08&engl=0}
}
@inbook {INBOOK-2010-07,
   author = {Hans-Joachim Bungartz and Janos Benk and Bernhard Gatzhammer and Miriam Mehl and Tobias Neckel},
   title = {{Fluid-Structure Interaction -- Modelling, Simulation, Optimisation, Part II}},
   series = {Partitioned Simulation of Fluid-Structure Interaction on Cartesian Grids},
   address = {Berlin, Heidelberg,},
   publisher = {Springer},
   series = {LNCSE},
   volume = {73},
   pages = {255--284},
   type = {Beitrag in Buch},
   month = {Oktober},
   year = {2010},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2010-07&engl=0}
}
@inbook {INBOOK-2009-14,
   author = {Bernhard Gatzhammer and Miriam Mehl},
   title = {{Fluid-Structure Interaction: Theory, Numerics, and Applications}},
   series = {FSI*ce -- A Modular Simulation Environment for Fluid-Structure Interactions},
   address = {Kassel},
   publisher = {kassel university press},
   pages = {115--130},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2009},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2009-14&engl=0}
}
@inbook {INBOOK-2009-13,
   author = {Hans-Joachim Bungartz and Miriam Mehl and Christoph Zenger},
   title = {{100 Volumes Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) and 40 Years Numerical Fluid Mechanics}},
   series = {Computer Science and Fluid Mechanics -- An Essential Cooperation},
   address = {Berlin, Heidelberg,},
   publisher = {Springer-Verlag},
   series = {Notes on Numerical Fluid Mechanics and Multidisciplinary Design},
   volume = {100},
   pages = {437--450},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2009},
   issn = {1612-2909},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2009-13&engl=0}
}
@inbook {INBOOK-2008-18,
   author = {Miriam Mehl and Tobias Neckel and Tobias Weinzierl},
   title = {{Domain Decomposition Methods in Science and Engineering XVII}},
   series = {Concepts for the Efficient Implementation of Domain Decomposition Approaches for Fluid-Structure Interactions},
   address = {Berlin, Heidelberg, New York},
   publisher = {Springer},
   series = {Lecture Notes in Science an Enginnering},
   volume = {60},
   pages = {591--598},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2008},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2008-18&engl=0}
}
@inbook {INBOOK-2008-17,
   author = {Hans-Joachim Bungartz and Miriam Mehl and Tobias Weinzierl and Wolfgang Eckhardt},
   title = {{ICCS 2008: Advancing Science through Computation, Part III}},
   series = {DaStGen - A Data Structure Generator for Parallel C++ HPC Software},
   address = {Berlin, Heidelberg,},
   publisher = {Springer-Verlag},
   series = {Lecture Notes in Computer Science},
   volume = {5103},
   pages = {213--222},
   type = {Beitrag in Buch},
   month = {Juni},
   year = {2008},
   issn = {0302-9743},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2008-17&engl=0}
}
@inbook {INBOOK-2006-16,
   author = {Miriam Mehl},
   title = {{High Performance Computing and Communications. Second International Conference, HPCC 2006, Munich, Germany, September 13-15, 2006. Proceedings}},
   series = {Cache-Optimal Data-Structures for Hierarchical Methods on Adaptively Refined Space-Partitioning Grids},
   address = {Berlin, Heidelberg,},
   publisher = {Springer},
   series = {LNCS},
   volume = {4208},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2006},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2006-16&engl=0}
}
@inbook {INBOOK-2006-15,
   author = {Hans-Joachim Bungartz and Miriam Mehl and Tobias Weinzierl},
   title = {{Euro-Par 2006, Parallel Processing, 12th International Euro-Par Conference}},
   series = {A Parallel Adaptive Cartesian PDE Solver Using Space--Filling Curves},
   address = {Berlin, Heidelberg,},
   publisher = {Springer-Verlag},
   series = {LNCS},
   volume = {4128},
   pages = {1064--1074},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2006},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2006-15&engl=0}
}
@inbook {INBOOK-2006-14,
   author = {Frank G{\"u}nther and Miriam Mehl and Markus P{\"o}gl and Christoph Zenger},
   title = {{PARA 2004}},
   series = {A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures},
   address = {Berlin, Heidelberg,},
   publisher = {Springer},
   series = {LNCS},
   volume = {3732},
   pages = {874--882},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2006},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2006-14&engl=0}
}
@inbook {INBOOK-2006-13,
   author = {Markus Brenk and Hans-Joachim Bungartz and Miriam Mehl and Tobias Neckel},
   title = {{Fluid-Structure Interaction - Modelling, Simulation, Optimisation}},
   series = {Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Environment},
   address = {Berlin, Heidelberg,},
   publisher = {Springer-Verlag},
   series = {LNCSE},
   volume = {53},
   pages = {233--269},
   type = {Beitrag in Buch},
   month = {August},
   year = {2006},
   isbn = {3-540-34595-7},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2006-13&engl=0}
}
@inbook {INBOOK-2005-11,
   author = {Markus Langlotz and Miriam Mehl and Tobias Weinzierl and Christoph Zenger},
   title = {{High Performance Computing in Science and Engineering, Garching 2004}},
   series = {SkvG: Cache-Optimal Parallel Solution of PDEs on High Performance Computers Using Space-Trees and Space-Filling Curves},
   address = {Berlin, Heidelberg, New York},
   publisher = {Springer-Verlag},
   pages = {71--82},
   type = {Beitrag in Buch},
   month = {August},
   year = {2005},
   isbn = {3-540-26145-1},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2005-11&engl=0}
}
@inbook {INBOOK-2004-20,
   author = {Frank G{\"u}nther and Andreas Krahnke and Markus Langlotz and Miriam Mehl and Markus P{\"o}gl and Christoph Zenger},
   title = {{Recent Advances in Parallel Virtual Machine and Message Passing Interface. 11th European PVM/MPI Users Group Meeting Budapest, Hungary, September 19 - 22, 2004. Proceedings}},
   series = {On the Parallelization of a Cache-Optimal Iterative Solver for PDEs Based on Hierarchical Data Structures and Space-Filling Curves},
   address = {Berlin, Heidelberg,},
   publisher = {Springer},
   series = {LNCS},
   volume = {3241},
   pages = {425--429},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2004},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2004-20&engl=0}
}
@inbook {INBOOK-2003-17,
   author = {Hans-Joachim Bungartz and Miriam Mehl},
   title = {{Biofilms in Wastewater Treatment: An Interdisciplinary Approach}},
   series = {Beyond models: Requirements and chances of computational biofilms},
   publisher = {IWA Publishing},
   pages = {60--87},
   type = {Beitrag in Buch},
   month = {Januar},
   year = {2003},
   language = {Englisch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {The central theme of the book is the flow of information from experimental approaches in biofilm research to simulation and modeling of complex wastewater systems. Probably the greatest challenge in wastewater research lies in using the methods and the results obtained in one scientific discipline to design intelligent experiments in other disciplines, and eventually to improve the knowledge base the practitioner needs to run wastewater treatment plants. The purpose of Biofilms in Wastewater Treatment is to provide engineers with the knowledge needed to apply the new insights gained by researchers. The authors provide an authoritative insight into the function of biofilms on a technical and on a lab-scale, cover some of the exciting new basic microbiological and wastewater engineering research involving molecular biology techniques and microscopy, and discuss recent attempts to predict the development of biofilms. This book is divided into 3 sections: Modeling and Simulation; Architecture, Population Structure and Function; and From Fundamentals to Practical Application, which all start with a scientific question. Individual chapters attempt to answer the question and present different angles of looking at problems. In addition there is an extensive glossary to familiarize the non-expert with unfamiliar terminology used by microbiologists and computational scientists.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2003-17&engl=0}
}
@inbook {INBOOK-2003-16,
   author = {Hans-Joachim Bungartz and M. Kuehn and Miriam Mehl and S. Wuertz},
   title = {{Polymer and Cell Dynamics - Multiscale Modelling and Numerical Simulations}},
   series = {Space- and time-resolved simulations of processes in biofilm systems on a microscale},
   address = {Basel},
   publisher = {Birkh{\"a}user},
   pages = {175--188},
   type = {Beitrag in Buch},
   month = {Oktober},
   year = {2003},
   isbn = {376-436-924-8},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2003-16&engl=0}
}
@proceedings {PROC-2012-02,
   editor = {Bader Michael and Bungartz Hans-Joachim and Grigoras Dan and Miriam Mehl and Ralf-Peter Mundani and Rodica Potolea},
   title = {{ISPDC 2012 - 11th International Symposium on Parallel and Distributed Computing}},
   address = {Los Alamitos},
   publisher = {IEEE Computer Society},
   institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik, Elektrotechnik und Informationstechnik, Germany},
   type = {Tagungsband},
   month = {November},
   year = {2012},
   language = {Deutsch},
   cr-category = {I.6 Simulation and Modeling},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme},
   abstract = {leer},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=PROC-2012-02&engl=0}
}
@book {BOOK-2015-01,
   editor = {Miriam Mehl and Manfred Bischoff and Michael Sch{\"a}fer},
   title = {{Recent Trends in Computational Engineering}},
   address = {Berlin, Heidelberg, New York},
   publisher = {Springer},
   series = {Lecture Notes in Computational Science and Engineering},
   volume = {105},
   pages = {317},
   type = {Buch},
   month = {Januar},
   year = {2015},
   isbn = {ISBN 978-3-319-22996-6},
   language = {Englisch},
   cr-category = {J.2 Physical Sciences and Engineering},
   ee = {http://www.springer.com/us/book/9783319229966},
   department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme, Simulation gro{\ss}er Systeme;     Universit{\"a}t Stuttgart, Institut f{\"u}r Parallele und Verteilte Systeme},
   abstract = {This book presents selected papers from the 3rd International Workshop on Computational Engineering held in Stuttgart from October 6 to 10, 2014, bringing together innovative contributions from related fields with computer science and mathematics as an important technical basis among others. The workshop discussed the state of the art and the further evolution of numerical techniques for simulation in engineering and science. We focus on current trends in numerical simulation in science and engineering, new requirements arising from rapidly increasing parallelism in computer architectures, and novel mathematical approaches. Accordingly, the chapters of the book particularly focus on parallel algorithms and performance optimization, coupled systems, and complex applications and optimization.},
   url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BOOK-2015-01&engl=0}
}