
Institute for Parallel and Distributed Systems
Machine Learning and Robotics Lab

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Master Thesis Nr. MCS-0010

IMAGE RECOSNTRUCTION FROM
COMPRESSIVE SENSING MEASUREMENTS

USING DEEP LEARNING

Luis Manuel Bracamontes Hernandez

Course of Study: M.Sc. Computer Science

Examiner: Prof. Dr. rer. nat. Marc Toussaint

Advisor 1: MSc. Javier Alonso Garcia
Advisor 2: Ph.D. Fabien Cardinaux

Commenced: 1. April 2016

Completed: 30. September 2016

CR-Classification: C.1.3, I.2.6, I.4.5

Abstract
Compressed sensing (CS) is a novel signal processing theory stating that a signal can be fully

recovered from a number of samples lower than the boundary specified by Nyquist–Shannon

sampling theorem, as long as certain conditions are met. In compressed sensing the sampling

and compression occur at the same time. While that allows to have signals sampled at lower

rates, it creates the necessity to put more workload on the reconstruction side. Most algorithms

that are used for recovering the original signal are called iterative, that is because they solve

an optimization problem that is computationally expensive. Not only that, but in some cases

the reconstruction does not have good quality. This thesis proposes a non-iterative machine

learning method using Deep Learning (DL) in order to recover signals from CS samples in

a faster way while maintaining a reasonable quality. DL has already proved its potential in

different image applications. As a result, this approach is tested using grayscale images and

recent DL software packages. The results are compared against iterative methods in terms of

the amount of time needed for full reconstruction as well as the quality of the reconstructed

image. The experiments showed both the effectiveness of this method for speeding up the

recovery process while maintaining a good quality level.

i

Contents
Abstract i

List of figures v

List of tables vii

List of algorithms vii

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 2

2 Theoretical foundations 3

2.1 Compressed Sensing . 3

2.1.1 Sparsity of a signal . 4

2.1.2 Incoherence . 4

2.1.3 Sensing Matrix and RIP . 5

2.1.4 Signal Recovery . 5

2.2 Deep Learning . 6

2.2.1 Supervised learning . 6

2.2.2 Unsupervised learning . 7

2.2.3 Neural Networks . 7

2.2.4 Convolutional Neural Networks . 12

3 Implementation methodology 17

3.1 Theano . 17

3.1.1 Sdeepy . 18

3.2 Graphics Procesing Unit (GPU) . 18

3.3 Datasets . 18

3.3.1 Training set . 20

3.3.2 Validation set . 20

3.3.3 Testing set . 20

3.4 Preprocessing of the images for supervised learning 20

3.5 Preprocessing of the images for unsupervised learning 21

3.6 Network architectures for CS recovery . 21

iii

Contents

3.6.1 Small supervised CNN network . 22

3.6.2 Small usupervised CNN network . 22

3.6.3 Large supervised CNN network . 22

3.6.4 Large unsupervised CNN network . 23

3.7 Training CNN’s . 23

3.7.1 Weight initialization . 24

3.7.2 Loss function . 24

3.7.3 Parameter update rule . 24

3.7.4 Batch size training . 25

3.8 Postprocessing of reconstructed images . 25

3.9 Evaluation metrics . 26

3.9.1 PSNR . 26

3.9.2 SSIM . 27

4 Results 29

4.1 Small network . 29

4.1.1 Supervised training . 29

4.1.2 Unsupervised training . 30

4.2 Large Network . 31

4.2.1 Supervised training . 31

4.2.2 Unsupervised training . 32

4.3 Results summary . 34

4.4 Reconstruction of testing dataset images . 35

4.5 Computational reconstruction time and quality comparison against traditional

methods . 39

4.6 Reconstruction with alternate compression rates 40

4.6.1 Compression rate 1/10 . 40

4.6.2 Compression rate 1/8 . 41

5 Conclusion 43

5.1 Future work . 44

A Learned sensing matrices and network parameters 45

A.0.1 Unsupervised small network . 45

A.0.2 Unsupervised large network . 46

A.0.3 Network implementation settings . 46

Bibliography 50

iv

List of Figures
2.1 Compressed sensing measurement process . 4

2.2 Neural network example architecture . 8

2.3 Sigmoid function plot. 8

2.4 Tanh function plot. 9

2.5 ReLu function plot. 9

2.6 Chain rule in neural networks . 10

2.7 Forward pass to compute error . 10

2.8 Backpropagation process through the network 11

2.9 Fully connected network VS CNN . 13

2.10 Convolution layer . 14

3.1 Evaluation images . 20

3.2 Preprocessing of images . 21

3.3 Small supervised CNN architecture for recovery 22

3.4 Small unsupervised CNN architecture for recovery 22

3.5 Large supervised CNN architecture for recovery 23

3.6 Large unsupervised CNN architecture for recovery 23

3.7 Postprocessing of recovered images . 26

4.1 PSNR and SSIM validation progress during training of supervised small network 30

4.2 PSNR and SSIM testing progress during training of supervised small network . 30

4.3 PSNR and SSIM validation progress during training of unsupervised small network 31

4.4 PSNR and SSIM testing progress during training of unsupervised small network 31

4.5 PSNR and SSIM validation progress during training of supervised large network 32

4.6 PSNR and SSIM testing progress during training of supervised large network . . 32

4.7 PSNR and SSIM validation progress during training of unsupervised large network 33

4.8 PSNR and SSIM testing progress during training of unsupervised large network 33

4.9 Reconstructed testing images subset 1 . 35

4.10 Reconstructed testing images subset 2 . 36

4.11 Reconstructed testing images subset 3 . 37

4.12 Reconstructed testing images subset 4 . 38

4.13 Reconstructed cameraman with traditional methods 40

4.14 PSNR and SSIM traning for compression ratio 1/10. 41

v

List of Figures

4.15 PSNR and SSIM traning for compression ratio 1/8. 41

4.16 Reconstructed barbara, lena and woman using subrates 1/8 and 1/10. 42

A.1 Learned sensing matrix for small network . 45

A.2 Learned sensing matrix for large network . 46

vi

List of Tables
3.1 Technical speficications of GeForce GTX Titan . 18

3.2 Datasets for training and testing . 19

3.3 Transformed datasets for training and testing . 19

4.1 Summary of PSNR for reconstructing networks 34

4.2 Summary of SSIM for reconstructing networks . 34

4.3 Average time and quality metrics for testing dataset 39

A.1 Implementation details of each network . 46

vii

List of Algorithms
1 Gradient Descen (GD) . 11

2 Stochastic Gradient Descen (SGD) . 12

3 Mini Batch Stochastic Gradient Descent (SGD) 12

4 Adam update . 25

ix

1 Introduction

1.1 Motivation

Compressed sensing (CS) is a novel technique based on the discoveries done by Candes et al.

[13] and Donoho [25]. They showed that as long as certain conditions are met, a signal can be

fully recoverd from a small number of measurements. Due to this fact, CS is suitable for many

Signal Processing (SP) applications and specifically image processing. An example of this are

the publications made by Duearte et al. and Wakin et al. [26, 52]. In their work they explained

their ideas for architecting an imaging sensor capable of sampling and compressing the signal

at the same time. Such a sensor offers the advantage of taking less samples than those needed

by conventional sensors and there is no extra compression phase after the measurements

are taken, thereby saving computation workload. As a result, the industry and the research

community have been interested and actively worked during the last years in order to design

sensors capable of giving both better energy efficiency as well as good algorithms capable of

yielding high quality for the recovered images. Unfortunately, everything comes with a cost and

recovering the original image from such compressed measurements is a problem that has high

complexity and computationally expensive to solve. These problems are commonly referred

to as inverse problems, since one tries to recover a signal from under-sampled measurements,

which translates into trying to find a solution to an under-determined system.

Many algorithms have been proposed for image reconstruction, among the most widely

known and recognized one can find [43, 24, 41, 45, 18, 27]. Nevertheless, most of them

suffer from the same disadvantages because they follow the most general approach for the

reconstruction process. First, they solve an optimization problem, which implies the use of

iterations until a possible solution is obtained. Because of that, those algorithms are called

iterative. Furthermore, they may need up to 10 minutes to reconstruct only one image. Second,

they only focus on obtaining raw pixel values that, hopefully, will correspond to the original

image. That makes such algorithms not useful for other common tasks like object detection

and segmentation. Although those algorithms are not fast and therefore not suitable for

real-time applications, they render reconstructed images with high quality and good visual

1

Chapter 1. Introduction

impact. Designing algorithms that can reconstruct images from compressed measurements in

a simpler faster way while keeping or increasing the final quality of the image is still an active

topic for research and one of the major motivations for this thesis.

Another justification for this thesis is the state-of-the-art results that Deep Neural Networks

(DNNs) [40] have proved for several image processing tasks like classification [38], image

denoising [8] and superresolution [23]. Based on the promising performance of those exam-

ples, applying DNNs for reconstructing images from compressed measurements seems to

be another application that should be investigated. Namely, we focus on the use of Convo-

lutional Neural Networks (CNNs) for the afore mentioned task and because of its nature the

reconstruction process may take less time and the quality as well as the visual impact of the

images could also be preserved or even increased.

In this thesis a different method for image reconstruction that does not follow the conventional

approach is proposed, that is we do not try to find a solution for an optimization problem. As

a result, this is a non-iterative solution for recovering images from compressed measurements.

In order to reconstruct the image we exploit the proven capacity of CNNs for image processing

tasks. Several network architectures are evaluated and compared with iterative methods in

terms of time and final quality of the reconstructed image.

1.2 Outline

The thesis follows this organization:

Chapter 2 - Theoretical foundations introduces the important background in compressed

sensing, deep learning and CNNs. It also presents the common problems that are faced when

trying to recover images from compressed measurements using traditional algorithms.

Chapter 3 - Implementation methodology gives an overview of the datasets and tools that

are used in order to build and implement the neural network. It also explains the data prepa-

ration and post processing that yields the final outcome. We also describe the CNN’s we have

devised in order to recover images from compressed measurements.

Chapter 4 - Evaluation shows the reconstructed images using our CNN and explains the

training procedure. We also make a comparison between state-of-the-art iterative algorithms

for the recovery process against the proposed method using CNNs. The evaluation is made

in terms of the speed and quality. It also explains the differences between several network

architectures.

Chapter 5 - Conclusion states the lessons learned throughout the development of the thesis

as well as the future work that could lead to better results and extend its application.

2

2 Theoretical foundations

In this chapter we will explain the necessary background that is used throughout the thesis.

In the following we will introduce the theoretical foundations of compressed sensing and

some of the problems when dealing with it. Deep Learning will also be introduced along with

convolutional neural networks which will be discussed in more detail.

2.1 Compressed Sensing

Compressed sensing is mathematical theory that deals with the problem of recovering a

signal from a small number of measurements, the number of measurements is less than the

minimum number of samples defined by Shanon-Nyquist theorem (sampling acquisition

must be done at least twice the highest frequency in the signal). For many applications, like

imaging and video, the sampling rate specified by Nyquist might end up being very large that

the amount of samples that have to be compressed and transmitted increases the complexity

of the system and makes it costly. Compressed sensing contradicts the previous statements

since it claims that a signal may be recovered with lesser samples or measurements than

conventional approaches. That is possible because it proposes a generalization of a linear

mapping paired with optimization in order to do the sampling and recovery process at notably

inferior rates than that imposed by Nyquist rate.

Compressed sensing heavily relies on two principles: sparsity of the signal and incoherence,

which refers to sampling/sensing representation; both terms will be further discussed. In

addition to that, CS tries to overcome two of the major incapabilities of sample-compress

schemes: First, the number of samples or measurements is considerably reduced. Second, the

compression stage occurs inside the sensor (hardware). Therefore, there is no need to add

extra encoding computation.

3

Chapter 2. Theoretical foundations

2.1.1 Sparsity of a signal

The mathematical formulation of sparsity is defined as follows: a signal x ∈ RN (for instance

n-pixels of an image) is interpreted in terms of its basis representation as a linear combination

of the orthonormal basis {ψ}N
i=1 and coefficients α as

x =
N∑

i=1
αiψi or x =Ψα (2.1)

CS takes advantage of the certainty that plentiful natural signals are sparse or compressible

when stated in a condensed representaion. For example, images are easily compressed using

the discrete cosine transform (DCT) and wavelet bases [42]. Namely, a signal is said to be

compressible or k-sparse if there exists a convenient basisψ for which x is a linear combination

of only K basis vectors, obeying K ¿ N . That means, only K elements of α present in 2.1 are

nonzero.

2.1.2 Incoherence

Measurements in CS are obtained by using a linear operator that takes M < inner products,

where M < N , between x and a set of vectors {φ}M
i=1. Figure 2.1 depicts the operation. Putting

everything together each measurement yi is an M ×1 vector and {φ}T
i representing the rows

as a M ×N matrixΦ), then the sampling process is

y =Φx =ΦΨα (2.2)

from that one can see that the product of matricesΦΨ has size M ×N and the measurement

matrixΦ is independent from the signal x). The previous is important since the choice of the

sensing matrix plays an important role for the reconstruction process, that is recovering x from

measurements y). In particular,Φ andΨ should be incoherent. Coherence of two matrices is

Figure 2.1 – Measurement process in compressed sensing.

4

2.1. Compressed Sensing

a measure that asserts the level of correlation ofΦ andΨ and is computed as follows

µ(Φ,Ψ) =p
n max

1≤k, j≤n
| <φk ,ψ j > | (2.3)

where n is the number of elements of the signal and µ(Φ,Ψ) ∈ [1,
p

n]. The lower µ the more

incoherent the matrices are and therefore the successful reconstruction of the original signal

is more probable.

2.1.3 Sensing Matrix and RIP

The sensing matrix Φ should be chosen so that the number M of its rows is larger than

the number of nonzeros entries in the sparse signal K , that is M ≥ K . Due to the fact that

defining a number K for natural signals is unknown, a constraint commonly referred as

r estr i cted i sometr y pr oper t y (RIP) [15, 14, 10] was proposed. It ensures that the matrix

Φ retains the length of the k-sparse vectors and therefore the signal is not corrupted by the

transformation going from x ∈ RN to y ∈ RM . The mathematical representation of RIP reads

(1−δk)‖x‖2
l2
≤ ‖Φx‖2

l2
≤ (1+δk)‖x‖2

l2
(2.4)

where δk , referred to as r estr i cted i sometr y const ant , is the smallest number preserving

the inequality for the matrixΦ.

Designing optimal sensing matrices goes beyond the scope of this thesis. Moreover, since

the RIP and incoherence may be obtained with high probability by taking Φ as a random

Gaussian matrix with independent and identically (iid) distributed elements[12] we will not

devote more time for this topic. Particularly, we will use a constant iid Gaussian sensing matrix

throughout the thesis unless otherwise specified.

2.1.4 Signal Recovery

Even though RIP (2.4) and incoherence theoretically ensure that a K-sparse signal can be

entirely described with only M measurements, it is still necessary to restore the original signal

x. A great deal of algorithms alredy existing accomplish the recontruction process by reading

the measurements x, the matrix Φ and solving an optimization problem. Concretely, most

recovery algorithms try to find the best approximation x̂ =Ψα for some transform basisΨ. It

has been proved [16, 25] that the optimal solution for that problem is x̂ with the smallest l0

norm from measurements y given by

min
x̂∈RN

‖x̂‖0 s.t . y =Φx̂ (2.5)

Nevertheless, the solution for 2.5 is NP-hard optimization problem that becomes numerically

unstable and requires comprehensive computation. As a result, a convex relaxation was

introduced and the l1 norm is used instead, reducing the problem to a linear program of the

5

Chapter 2. Theoretical foundations

form

min
x̂∈RN

‖x̂‖1 s.t . y =Φx̂ (2.6)

This holds true because measurements y were taken using an iid Gausian sensing matrix and

therefore a sucessful reconstruction is highly probable to occur [25, 11]. Algorithms trying

to solve this problem are dubbed iterative given the nature of convex optimization. Among

state-of-the-art iterative algorithms one can find [24, 41, 43] and they are used as a baseline to

compare our results.

In this thesis we do not aim to find an iterative solution for the aforementioned optimization

problem in equation 2.6, instead we explore the promising capabilities of using deep learning

for image processing tasks.

2.2 Deep Learning

Deep learning is a modern field of machine learning that makes used of deep neural networks

in order to learn representations of data with several layers of abstraction. It has been an

active research topic during recent years because they have achieved state-of-the-art results

in image processing, video, speech and audio applications. It also solves the inability of

traditional machine-learning methods to process plain raw data. Moreover, there is no need

to have extensive experience in order to engineer features that transform data into useful

representations or feature vectors that will ultimately allow the learning algorithm detect or

classify the data.

Deep learning techniques, either supervised or unsupervised, learn multiple level represen-

tations. Such representation are realized by simple but non-linear entities transforming the

representation level by level into a higher and more abstract one. By stacking a sufficient

number of such layers and by implementing a learning process, highly complex functions

can be learned and accurately approximated. The main singularity of such layers is that the

features are learned without much human intervention, that is without clever engineering

from a person with very specialized knowledge. Rather, those features are learned directly

from the data.

Because deep learning has proved to be effective in overcoming difficulties that have caused

trouble in the artificial intelligence community for years and because more and more data is

becoming available, it is highly expectated that deep learning will achieve more accomplish-

ments in the near future [40].

2.2.1 Supervised learning

Supervised machine learning algorithms are trained using data composed of a group of inputs

x and an analogous label y. The main reason for this learning approach is to produce the

6

2.2. Deep Learning

most accurate mapping f : x 7→ y that is used to reproduce more labels. Examples for this

kind of task are: classifying hand-written digits. Normally, we have a set of given hand-written

numbers paired with the correct discrete class and we would like to train a model so that in

the future we receive more hand-written digits and hopefully they will be correctly classified.

On the other hand, we have a set of compressed measurements and its respective original

images. In this case, we have a regression problem and our model will be trained so that new

compressed measurements are fed into it and successful images are reconstructed.

2.2.2 Unsupervised learning

Unlike supervised learning unsupervised learning is not given an explicit label y. That means,

the learning algorithm only has access to the input x as the training data. The applications of

unsupervised learning are: clustering, that is finding similarities on the data for a particular

number of groups; density estimation, which aims to discover a distribution explaining the

input data. Finally, unsupervised learning is used to reduce the dimensionality of the input

into a lower one that retains as much information as possible.

In our case, we use the unsupervised approach to both learn a sensing matrixΦ and recon-

struct the image back to its original size from these measurements.

2.2.3 Neural Networks

Neural networks (NN’s), in the field of machine learning, are a mathematical attempt to

approximate and estimate functions in the same way that many biological systems do. Even

though its origins dates back to the 40’s and 60’s, they have found effective and active usage

during recent years. There are three major concepts concerning NN’s that one has to deal with

to make use of them: network architecture, activation function and network training.

• Network architecture describes the number of parameters that build the network, the

number of hidden layers and input and output size. Figure 2.2 shows a node-like

generalization of a fully connected network architecture. The green arrows show how

the information flows. Outputs yK are parameterize as a weighted sum of a predefined

non-linear function f , ω and a bias b as

yK = f (
D∑

i=1
ωi xi +b) (2.7)

Normally, b is embedded into ω as an extra dimension to simplify its training and the

representation becomes

yK = f (
D∑

i=1
ωi xi) wi th ω ∈Rd+1 (2.8)

7

Chapter 2. Theoretical foundations

Figure 2.2 – A neural network takes xD inputs and gives yK outputs. Another important term
is the number of hidden units which refers to the number of layers between the input and
output layers. The term deep comes when the number of layers and its size grows larger. Most
commonly ω(i)

MD are called the weight parameters.

• Activation function specifies the output of each neuron in the network according to

a given input. Such input, is the product between ω and x which is subsequently

transformed by a function commonly referred to as nonlinearity because of its behavior.

Most popular functions are plotted in figures sigmoid 2.3, tanh 2.4 and more recently

linear rectifier (ReLu) 2.5 [32].

• Network training is the process for learning the values of parameters ω of the network.

The simplest way to solve the problem is by minimizing an error function, for example

least squares error. That is achieved from a set of input vectors xn , for n = 1, ..., N , along

−5 −3 −1 1 3 5

0.2

0.4

0.6

0.8

1

x

σ(x)1
1+e(−x)

Figure 2.3 – Sigmoid function plot.

8

2.2. Deep Learning

−5 −3 −1 1 3 5

−1

−0.5

0.5

1

x

f (x)2
1+e(−2x) −1

Figure 2.4 – Tanh function plot.

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

x

f (x)max(0, x)

Figure 2.5 – ReLu function plot.

with target vectors yn . Using optimization theory we try to minimize

E(w) = 1

2

N∑
n=1

‖ f (xn , w)− yn‖2 (2.9)

thereby obtaining the optimum values for ω. The actual minimization step uses of an

algorithm called backpropagation, which is a method that computes the gradients by

recursively applying chain rule. The error is computed by doing a forward pass in the

network.

• Weight Initialiyation in order to carry out the training process parameter values must

have an initial value. Such value is, normally, assigned randomly and does not affect the

final outcome.

9

Chapter 2. Theoretical foundations

• Chain rule is a mathematical formula allowing to compute the gradient of a function

with respect to another function. It is of importance for NN’s because it helps find the

derivative of the error between input and the output. Figure 2.6 shows how the gradient

is computed through the network.

• Forward pass is the process of taking the desired input and transforming it according to

the current network parameters. The output is then compared with a desired target to

obtain the error. Figure 2.7 provides a graphical representation.

• Backpropagation is a technique that permits NN’s to learn function approximations.

Once the forward pass is carried out, the error is obtained evaluating the loss function.

Afterwards, the gradient of the loss function with respect to the given input is recursively

propagated through the network. The weights ω are updated by moving towards the

minimum of the loss function. Figure 2.8 depicts the process. The action of completing

a forwards pass, error computation, loss gradient and backpropagation over all training

examples is called epoch.

• Gradient Descent (GD) is the numeric algorithm used to find the minimum of the loss

function. The gradient of the loss function is evaluated using the training examples as

input, then it is multiplied by a parameter called learning rate and substracted from

Figure 2.6 – Chain rule computation in the network.

Figure 2.7 – Forward pass is used to compute the predictions using the current values of weight
parameters.

10

2.2. Deep Learning

Figure 2.8 – After the error has been computed, it is backpropagated through the network
updating ω parameters accordingly.

the current weight values. In practice, it is not implemented because it first needs to

compute the gradient with respect to each training sample before doing a simple update

for the weight parameters. For large datasets this approach would require agreat deal of

computational effort and its speed convergence is slow. As a result, GD is not scalable

and limits its application to small datasets. The process is decribed in Algorithm 1.

Algorithm 1 Gradient Descen (GD)

Require: Initial ω0 ∈ Rn , stepsize α, function ∇ωLt (ω), training samples M
1: t ← 0 (Initialize timestep)
2: while ωt not converged do
3: t ← t +1
4: g t ← 1

M

∑M
m=1∇ωLt (ωm

t−1) (Gradient of loss function for each sample)
5: ωt ←ωt−1 −αg t (Update parameters)
6: end while
7: return ωt (Resulting parameters)

• Stochastic gradient descent (SGD) is a variation of GD that makes updates in a different

way. Unlike GD, SGD makes an update of weight parameters for each sample making

more efficient. That is, it moves towards the minimum with each gradient evaluation

instead of doing a weighted average of gradients. Nevertheless, it requires a certain

number of iteration, normally unknown, and since it makes updates with each sample

it is very sensitive if the data has been scaled or transformed making it inaccurate.

Algorithm 2 shows a generalization of how it is implemented.

• Mini-batch Stochastic gradient descent (SGD) is the most commonly used algorithm

for large neural networks because it overcomes the limitations of GD and SGD for big

datasets. Unlike GD, it starts moving towards the minimum by just evaluating a small

number of samples and updating the weight parameters accordingly. That is, not all

training examples are used before ω values are changed. Dissimilar to SGD, it does

11

Chapter 2. Theoretical foundations

Algorithm 2 Stochastic Gradient Descen (SGD)

Require: Initial ω0 ∈ Rn , stepsize α, function ∇ωLt (ω), training samples M
1: t ← 0 (Initialize timestep)
2: while ωt not converged do
3: t ← t +1
4: for m = 1 to M do
5: g t ←α∇ωLt (ωm

t−1) (Gradient of loss function for each sample)
6: ωt ←ωt−1 −αg t (Update parameters)
7: end for
8: end while
9: return ωt (Resulting parameters)

not update the parameters with each training sample, rather it evaluates a smaller

subset of training samples thereby increasing accuracy. That means, it introduces a new

hyperparameter for the training specifying the number β of samples to be used during

each iteration and it is referred to as batch size. Algorithm 3 shows this approach.

A practical difficulty, common to all algorithms following gradient descent approach,

is to find a good learning rate α. Since, there is no proven optimum value in literature

many algorithms are implemented trying to adapt the learning rate on the go to avoid

overshooting and allow for faster convergence.

Algorithm 3 Mini Batch Stochastic Gradient Descent (SGD)

Require: Initial ω0 ∈ Rn , stepsize α, function ∇ωLt (ω), training samples M , match size β
1: t ← 0 (Initialize timestep)
2: while ωt not converged do
3: t ← t +1
4: for m = 1 to M

β do

5: g t ←∑β

i=1∇ωLt (ωi
t−1) (Gradient of loss function for each sample)

6: ωt ←ωt−1 −αg t (Update parameters)
7: end for
8: end while
9: return ωt (Resulting parameters)

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN’s/ConvNets) are a subset of the previously described

neural networks. They are also built of neurons that aim to learn weight parametersω and bias

parameters b by performing dot products on certain regions of the input data and normally

followed by one of the afore mention nonllinear functions. The main difference, however, is

that CNN’s assume that the input data exposes high correlation in at least one dimension, for

example images, and exploits that nature. The input data is convolved through the network

during the forward pass and the number of parameters is lesser because the dot products are

12

2.2. Deep Learning

only computed in certain regions and not in the image as a whole.

CNN architecture

In contrast with fully connected networks, the layers of CNN’s are arranged in a 3D fashion

seen as: width, height, depth. It differentiates in the sense that only a small subset of a layer

connects to the one before it, thus reducing the number of neurons and encapsulating certain

features in the input image as shown in figure 2.9.

CNN’s are assembled by interconnecting three different types of layers one after another:

Convolutional Layer, Pooling Layer and Fully-Connected Layer. Optionally, the output of each

layer is passed through the ReLu function 2.5.

• Convolutional layer is the main part composing a CNN. It computes the dot product

between parameters ω and a small area of the input image. Its functionality and output

size are controlled by four hyperparameters: number of kernels or filters K , size of kernel

filters F , number of zero padding P and stride S. Figure 2.10 shows the mechanism that

CNN’s use, each channel of the input image is convolved with the filters generating an

output.

In general convolution layers have the following characteristics:

– Input size: W1 ×H1 ×D1

– Hyperparameters: Number of filters K , filter size F , stride S and zero padding P .

– Output size: W2 ×H2 ×D2 where:

* W2 = (W1 −F +2P)/S +1

Figure 2.9 – Left: Fully connected network with one hidden layer. Right 3D (width, height,
depth) CNN implementation. Each input dimension or channel is convolved with all kernels
and each element in the kernel represent a neuron.

13

Chapter 2. Theoretical foundations

Figure 2.10 – Example of a convolution layer in a 3D input with parameters: initial input
volume 5×5, K = 2, F = 3, S = 2 and P = 1.

* H2 = (H1 −F +2P)/S +1

* D2 = K

Sometimes it is necessary to preserve the original sizes of height and width, like in our

case, a common setting to achieve that is by using these settings: K = 3, S = 3 and P = 3.

• Pooling layer Its main function is to reduce the spatial size, doing that allows to reduce

the complexity of the network while maintaining information. In our experiments we

do not make use of it.

• Fully connected layer is completely connected to all neurons in the previous layer, as

in a regular neural network. It also makes networks grow lager and when used in CNN’s

they are commonly the last layer computing the final result for a type of classification.

As with pooling layers we do not make use of it.

• Activation function for CNN’s normally refers to a linear rectifier function ReLu 2.5.

14

2.2. Deep Learning

It is explicitly given as another layer in the network and allows for efficient gradient

propagation. It is very popular because not only is its computation easier than other

activation functions like sigmoid 2.3 or tahnh 2.4 but, it also decreases the probability

for observing vanishing gradients.

15

3 Implementation methodology

As stated before we want to evaluate the performance of CNN’s to reconstruct images from

compressed measurements. In this chapter we will describe the tools and software frameworks

used in order to build the set-up for our experiments. First, we introduce some of the most

widely used libraries to build and train neural networks and the specific software tools for

this thesis. Second, we briefly describe Graphics Processing Units (GPU’s) and give reasons

why they are an important tool when working with deep learning. Third, we will describe

the datasets for training the networks and briefly justify its utilization. Then, we explain how

the data is pre and post-processed. This is important since it allows to efficiently use the

hardware resources and makes the training process numerically stable. Finally, we propose

CNN architectures for the reconstruction process.

3.1 Theano

Theano is a library written in python that permits to define, optimize and compute mathemat-

ical expressions that deal with high-dimensional arrays in an efficient way. It is widely used

among the deep learning community because it is optmized to make use of GPU routines that

make training faster, efficient symbolic differentiation, stability optimizations and therefore

making it realiable since it is constantly tested and debugged [49]. Nevertheless, Theano is not

intended to be used only for neural natwork applications. Therefore, it is necessary to write

routines or API’s that specially handle the difficulties encountered for deep learning. Such

applications are normally an extra abstraction layer that sits on top of Theano’s implementa-

tion and specially allow to build and train neural networks. Examples publically avaible are

Lasagne [22], Blocks [51] and Keras [19]. Other common frameworks in deep learning are

Google’s Tensorflow [4] that is written in C++, Torch [20] written in Lua and Caffe [36] also

written in C++. Most of them offer the same characteristics and mostly differ in the language

they are written in, speed and target application, for example Caffe is not suitable for audio

and text applciations.

17

Chapter 3. Implementation methodology

3.1.1 Sdeepy

Due to the fact that the previously mentioned implementations are constantly updated and

changing, Sony decided to develop its own library to develop their projects. Sdeepy is an in-

house Sony’s deep learning library implementation that makes use of Theano and incorporates

routines commonly used as building-blocks for training and testing neural networks. It has

the advantage that many new features can be added at any time they become available while

maintaining the stability. Furthermore, it is easier to adapt and modify according to one’s

needs. Because of all that, we will use Sdeepy for this thesis but all implementations might be

easily translated into any available framework.

3.2 Graphics Procesing Unit (GPU)

A Graphics Processing Unit (GPU) is a chip architecture mainly designed for imaging and

gaming. It differs from general-purpose CPU’s in that they can handle larger amounts of data

efficiently and faster in a parallel way, making them much more suitable for deep learning

applications. It has extended its usage into machine learning area because companies like

NVIDIA have develop GPU’s specially optimized for neural networks. Not only that, but

they have also written routines (NVIDIA Deep Learning SDK) that improve and speed up

common operations like convolutions, better memory management and friendlier API’s for

easy learning. By distributing the workload of the training process the convergence occurs

much faster than by using conventional CPU’s. Table 3.1 lists the technical characteristics of

the GPU used in our experiments.

Table 3.1 – Technical details of the GPU

Architecture Maxwell
CUDA cores 3072
Base clock speed 1000MHz
Boost clock speed 1075MHz
Memory type GDDR5
Memory 12GB
Memory Bandwidth 7Gbps
Memory interface width 384-bit

3.3 Datasets

It is also important to mention that along with better hardware and more ingenious algorithms,

deep learning has achieved major success because in recent years more and more data is

becoming available through the internet. For most of machine learning methods data is the

most important asset to obtain successful results. In fact, choosing the right dataset is the first

18

3.3. Datasets

step in the deep learning work-flow cycle and it is, in general, more important than the chosen

learning algorithm itself.

Since our goal is to reconstruct images, we make use of three different image datasets: BioID

[29], Label faces in the wild (LFW) [33] and LabelMe [48]. The first two datasets served as an

initial baseline for measuring the plausibility of our approach and the last one allows for a

more robust justification as explained later. All of the datasets are known in the community for

being applied to different computer vision tasks like face detection, emotion recognition and

image classification. Here, we propose its usage for image reconstruction from compressed

samples.

Table 3.2 – Original features of each dataset.

Dataset name Number of images training testing Original image size Grayscale
BioID 1521 1371 150 384x286 Yes
LFW 13233 11933 1300 250x250 No
LabelMe 50000 40000 10000 256x256 No

All datasets differ in terms of image size, color model (RGB or Grayscale) and file format (jpg,

png, bmp, etc.). In order to facilitate implementation, all datasets had to be transformed into

a more generic form that could meet our constraints. Namely, it is more convenient to work

with grayscale images and once promising results are obtained, it can be easily extended to

RGB images or even video. For that reason, LFW and LabelMe datasets were converted into

grayscale images using rgb2gray MATLAB function. Furtheremore, having an image size that

was divisible by 16 was an initial requirement and so each image was resized to 256x256 using

imresize. The actual data being used is described in table 3.3.

Table 3.3 – Transformed features of each dataset.

Dataset name Number of images training validation Original image size Grayscale
BioID 1521 1371 150 256x256 Yes
LFW 13233 11933 1300 256x256 Yes
LabelMe 50000 40000 10000 256x256 Yes

Finally, in order to evaluate the performance of our trained network we introduce a set of 18

images. The images, we believe, are the most popular ones in the image processing community

and serve as a baseline for many reconstruction algorithms and image processing tasks. They

also help compare our results against the ones reported by other researchers.

19

Chapter 3. Implementation methodology

3.3.1 Training set

Consist of the largest set of images and is the one used for learning the optimum values of ω

parameters during training. Because one can argue that fitting ω values to a particular dataset

may lead to overfitting and therefore the network could perform poorly with unseen data we

have to test our model with different data. Column training in table 3.3 refers to the number

of training images for each dataset.

3.3.2 Validation set

Is a smaller part of the dataset that is not used for training. Since, the training images also

come from the same distribution, correlations about the performance in in this data help

decide whether the CNN is overfitting the data or how good the generalization is. Column

validation in table 3.3 gives the number of validation images for each dataset.

3.3.3 Testing set

This a set of images we introduce in order to further test the performance of our CNN. It’s

not used or linked in anyway to the training process and serves more as a proof of the CNN’s

performance and overfitting avoidance. We divide the set from the tradition of using certain

famous images for showing results of an image processing algorithm. The testing set is shown

in figure 3.1

Figure 3.1 – From Top Left to Bottom Right: ’fingerprint’, ’couple’, ’boats’, ’flintstones’, ’peppers’,
’woman’, ’butterfly’, ’bridge’, ’houses’, ’house’, ’mandril’, ’parrot’, ’montage’, ’foreman’, ’man’,
’barbara’, ’lena’, ’cameraman’

3.4 Preprocessing of the images for supervised learning

Even though grayscale images can be easily interpreted as a 2D matrix, CNN’s expect as an

input a 3D tensor, chapter 2.2.2, complying with the convention depth, height and width.

Consequently, extra preprocessing is carried out to generate the data set that is used as the

final input of the network for training. Moreover, we make use of a technique called Block

Compressed Sensing (BCS). BCS allows to divide the image into small blocks of size B ×B and

then compress them by using the same sensing matrixΦ. It has the main advantage of having

20

3.5. Preprocessing of the images for unsupervised learning

a small sensing matrix that can be easily extended to process high-dimensional images and

making the overall process faster [30, 28]. Another important parameter is the compression

rate C . That is, how much information we would like to sense. For most of our experiments

we choose C = 16 (we also show results with different C values).

To demonstrate the process, consider an image randomly taken from one of the datasets. It has

a size of M ×N . First, it is converted into blocks of size B ×B , where B = 16, by using MATLAB

command im2col. Second, each block is multiplied with the sensing matrixΦ to obtain the

measurements. That is, blocks of size 16×16 = 256 samples, with C = 16 we only take 256
16 = 16

measurements per block. blocks are 16×16, we take thus 16×16×16 measurements in total

for an image of size M = 256×N = 256. A pictorial representation of the process can be seen in

Figure 3.2. Φ is the sensing matrix of size C ×(pi xel s per block) =C ×B 2 and each block has

B×B pi xel s. Then, the blocks are vectorized so that they have a shape B 2×1 and consequently

multiplied withΦ(C×B 2) yielding a final measurement shape C×1. Finally, after preprocessing

each image individually, the data used for training and testing is a 4D tensor and each dimen-

sion is interpreted as follows: (Number o f i mag es, si ze o f C , si ze o f M
B , si ze o f N

B .

Figure 3.2 – Example of image preprocessing with B = 16, M = 16 and N = 256.

3.5 Preprocessing of the images for unsupervised learning

The preprocessing of the data for unsupervised learning is very similar to the approach

explained in section 3.4. The main difference is that there is no compressing phase. That is, we

directly reshape the image from M ×N to M × N
B × N

B . In our case, the values are still the same

as with the previous section M = 256, N = 256 and B = 16. This step is necessary because we

would like to test if learning the sensing matrixΦ can produce better results than using the

approach of compressing samples using i.i.d. Gaussian matrices.

3.6 Network architectures for CS recovery

The architecture of the network refers to the order in which different layers are arranged and

interconnected to achieve a specific purpose. Throughout the development of the thesis

21

Chapter 3. Implementation methodology

different architectures were heuristically tested and in the following we present the ones that

produced better performance.

3.6.1 Small supervised CNN network

This the first network we propose to recover images from compressed samples is in Figure 3.3.

It is composed of an input layer and an output layer. The input layer receives measurements

of size C × M
B × N

B , with a number of filters K = 128 and followed by ReLu. The output layer

receives as input the output of the previous layer, that is K × M
B × N

B and number of filters

K = 256. The output layer is designed so that it matches the size of the original image.

Figure 3.3 – Small supervised CNN architecture.

3.6.2 Small usupervised CNN network

Unlike the supervised network, the unsupervised approach does not take as input compressed

measurements using iid Gaussian matrices. Instead, it learns the sensing matrixΦ in the input

layer and the subsequent layers reconstruct the original image. Figure 3.4 shows this network.

Figure 3.4 – Small unsupervised CNN architecture. Notice the first layer is learning the sensing
matrixΦ.

3.6.3 Large supervised CNN network

During the development of this thesis several attemps for reconstructing images using deep

learning were published [39, 44, 34, 35, 5]. Interestingly, Kulkarni et al. [39] also addressed the

problem of CS recovery using a CNN. The other approaches are very similar among themselves

because they are based on an auto-encoder. The most interesting findings, however, were

made by Adler et al. [5]. They introduced a new parameter that controls the redundancy of the

network. Redundancy refers to how large the network will be in relation with the size of the

22

3.7. Training CNN’s

original image. For example, by taking into account the redundancy factor a reconstruction

layer will have a size r edund anc y×N . The value 8 turned out to yield the best reconstruction

performance according to their tests. In our case the image size is N = 256 giving 256×8

feature maps K = 2048 followed by another twin layer.

Based on the previous concepts and proved capabilities of the small network we proposed

another network sketched in Figure 3.5. Unlike small network, large network adds two extra

reconstruction layer, making deeper.

Figure 3.5 – Large supervised CNN architecture.

3.6.4 Large unsupervised CNN network

The unsupervised approach for the large network is the same as with the small network. That

is, the first layer takes the original image (interpreted as blocks) which was also reshaped

into a 3D tensor. Doing that, allows the network to learn the sensing matrix, in fact the first

layer is interpreted as the compression step. The second layer and third layers are called

reconstruction layers. The output layer reshapes the data back to the original image size and

is the last step in the recovery process.

Figure 3.6 – Large unsupervised CNN architecture. First layer is learning the sensing matrixΦ.

3.7 Training CNN’s

Training is the process of learning the values of the parameters of the networks. During

this step one is concerned with choosing an appropriate weight initialization, loss function,

parameter update rule and batch size.

23

Chapter 3. Implementation methodology

3.7.1 Weight initialization

Choosing the right initial values of the network is needed to secure a sucessful convergence.

Furthermore, it can avoid problems like vanishing gradients or ending up being stuck in local

minima. Using independent Gaussian random numbers is a very common practice for simple

networks but, as complexity increases, smarter ways had been investigated [31]. Glorot and

Bengio empirically validated a method to initialize the weights called normalized initialization

W ∼U [−
p

6√
n j +n j+1

,

p
6√

n j +n j+1
] (3.1)

were n j is the layer size of layer j . In this thesis we follow the same approach.

3.7.2 Loss function

Since we need a measure of how good the reconstruction from compressed measurements is,

we need to define a way to compare the difference (error) against the original image. Not only

that, the loss function also serves as an objective that we would like to minimize as much as

possible. The choice of the loss functions depends on the type of problem that one is facing,

regression or classification, in order to achieve better results. We have chosen to use the mean

square error as the loss function (MSE) because it is highly related to an evaluation metric

(PSNR) that we will explain later. The MSE is mathematically defined as

L(w) = 1

N

N∑
n=1

‖ f (xn , w)− yn‖2
2 (3.2)

were N is the number of images in the dataset, x̂ = f (xn , w) represents the nonlinear mapping

computed by the CNN (reconstructed image) and yn is the original image. Using backpropa-

gation, we train the CNN by minimizing the loss function defined in 3.2.

3.7.3 Parameter update rule

The easiest way to update the weights ω is by following the negative direction of the loss

function using mini batch SGD as we explanied previously 2.2.3. As with initialization methods,

the algorithms to find a minimum abound. For our training, we use Adam (Adaptive moment

estimation) [37] as it converges faster compared to other algorithms.

It works by storing the weighted decay of the previous square gradient vt and previous gradient

mt . Subsequently, vt and mt are corrected in order to eliminate initial bias. Those estimates

are used along with SGD as a way to adapt learning rates for parameter ω. The full algorithm

as we use it goes

24

3.8. Postprocessing of reconstructed images

Algorithm 4 Adam update

Require: α= 0.0005: Stepsize, ε= 10−8

Require: β1 = 0.9, β2 = 0.999: Exponential decay rates for moment estimates
Require: L(ω): Loss function
Require: ω0: Initial parameter values

m0 ← 0 (Initialize 1st moment vector)
2: v0 ← 0 (Initialize 2nd moment vector)

t ← 0 (Initialize timestep)
4: while ωt not converged do

t ← t +1
6: g t ←∇ωLt (ωt−1) (Gradient of loss function at time step t)

mt ←β1 ·mt−1 + (1−β1) · g t (Update biased first moment estimate)
8: vt ←β2 · vt−1 + (1−β2) · g 2

t (Update biased second moment estimate)
m̂t ← mt

(1−βt
1)

(Compute bias-corrected first moment estimate)

10: v̂t ← mt

(1−βt
2)

(Compute bias-corrected second moment estimate)

ωt ←ωt−1 −α · m̂t

(
p

v̂t+ε)
(Update parameters)

12: end while
return ωt (Resulting parameters)

3.7.4 Batch size training

For training our CNN’s and results presented later we have used a batch size of 20.

3.8 Postprocessing of reconstructed images

As it can be inferred from Figure 3.6 that the output of the CNN is not an image. Rather, it is a

3D tensor from which, with minor extra postprocessing, we recover the image. This process

aims to invert the prepocessing step explained in section 3.4.

First the image is reshaped back to ist original size M ×N . Then using col2im MATLAB comm-

nad we get the reconstructed image ready to be visualized. Image 3.7 shows the procedure.

Optionally, we also make use of the very common image denoiser BM3D [21]. That is because

we would like to get rid of the block nature previously explained.

25

Chapter 3. Implementation methodology

Figure 3.7 – Postprocessing illustration to visualize the reconstructed image.

3.9 Evaluation metrics

Whenever images are undergoing any type of processing, they are bound to suffer a depreca-

tion of the visual quality. Namely, for applications that are ultimately perceived by human eye,

there is a need to precisely evaluate the degradation rate (noise) in the image that a certain

algorithm adds. Even though agreeing on a metric that is capable of fairly measureing the

visual impact is somewhat subjective, there are two methods widely used for that purpose

Peak signal-noise-to ratio (PSNR) and Structural similariry index (SSIM) [53].

3.9.1 PSNR

The most common and straightforward way to compute measurement metric is the mean

square error (MSE) 3.2. It is obtained by averaging the difference between the original pixel

values of an image and the pixel values of a reconstructed image. By using the MSE of the

original image I and reconstructed image RI , the PSNR expressed in decibels (dB) is calculated

as

MSE = 1

N N

N∑
i=1

N∑
j=1

[I (i , j)−RI (i , j)]2 (3.3)

PSN R = 10 · log10

(
M AX 2

I

MSE

)
(3.4)

Here, M AX 2
I is the maximum pixel value of the image. For grayscale images such value is

(28 −1) using 8 bits per pixel. PSNR has the advantages of being simple and mathematically

suited from the optimization point of view but, it also has two major disadvantages: it fails to

capture the effects on the structure of the image which means that two images with the same

MSE may have a considerable visual impact difference and it does not consider the human

perception system. Desired values, considered good, for PSNR should be close or above 30dB.

26

3.9. Evaluation metrics

3.9.2 SSIM

SSIM is a method for measuring the similarity between two images. Unlike PSRN, it uses a

more complex approach to computing the difference in accordance with the human visual

perception. It takes into consideration three features of an image: luminance (l), contrast (c)

and structure (s). For two images I and RI , each term is evaluated as

l (I ,RI) = 2µIµRI +C1

µ2
I +µ2

RI +C1
(3.5)

c(I ,RI) = 2σIσRI +C2

σ2
I +σ2

RI +C2
(3.6)

s(I ,RI) = σI RI +C3

σIσRI +C3
(3.7)

variables µI , µRI , σI , σRI and σI RI represent local means, standard deviations and cross-

covariance of images I and RI. Arguments C1, C2 and C3 are predefined constants. The final

index is weighted a multiplication of the terms

SSI M(I ,RI) = [
l (I ,RI)α · c(I ,RI)β · s(I ,RI)γ

]
(3.8)

In practice α=β= γ= 1, and C3 = C2
2 simplifying to

SSI M(I ,RI) = (2µIµRI +C1)(2σI RI +C2)

(µ2
I +µ2

RI +C1)(σ2
Iσ

2
RI +C2)

(3.9)

This index can have values ssim ∈ [0,1] with 0 meaning that the images are not similar at all

and with 1 meaning that images are exactly the same. Ssim values above 0.7 are considered

sufficiently good for any reconstruction algorithm.

27

4 Results

In this chapter we present the outcome of using CNN’s for recovering images from compressed

measurements. First, we present the small network and its performance using both learning

approaches: supervised and unsupervised. We present the training, test and validation error

for LabelMe dataset [33]. Afterwards, we also show the images from the test dataset and

compare them against the ground truth in terms of PSNR and SSIM. The same data can be

expected for the large network. Finally, we present the time measurement that our approach

needs for fully reconstructing an image.

4.1 Small network

The small network was describe in section 3.6.2. It is not as deep as the large network and in

the following we show its performance.

4.1.1 Supervised training

For supervised learning we train the network using compressed measurements generated

with the constant matrix Φ. The left figure in 4.1 shows the training of the network for 200

epochs. The blue line is the loss function MSE. The red solid line represents the PSNR on

the whole training dataset whereas the red doted line represents the PSNR of the validation

dataset. As it can been seen the PSNR on the validation set is not as high as in the training

dataset but it is close. That means our network is not suffering from overfitting. On the right

figure in 4.1 is the SSIM progress on the validation dataset over each epoch. Figure 4.2 shows

the progress of PSNR and SSIM during training for the testing dataset. One can see that even

though the difference is higher, approximately 4 dB, the reconstruction is considerably good.

Higher values of PSNR and SSIM indicate better recovery quality.

29

Chapter 4. Results

(a) (b)

Figure 4.1 – Error=PSNR (left) and Error=SSIM (right) progress over each epoch of supervised
small network on validation dataset.

(a) (b)

Figure 4.2 – Error=PSNR (left) and Error=SSIM (right) progress over each epoch of supervised
small network on testing dataset.

4.1.2 Unsupervised training

For unsupervised learning the training data was not compressed beforehand. That is, the

matrixΦ is intrinsically learned as the first layer of the network and the subsequent layers aim

to reconstruct the image. Figure 4.3 shows the progress of PSNR and SSIM over 200 epochs

on validation datasets. Figure 4.4 depicts the same values for testing dataset using the same

network. As it was expected learning the matrixΦ yielded better results. Namely, there was an

increase of approximately 1.2 dB for PSNR and 0.02 for SSIM.

30

4.2. Large Network

(a) (b)

Figure 4.3 – Error=PSNR (left) and Error=SSIM (right) progress over each epoch of unsupervised
small network on validation dataset.

(a) (b)

Figure 4.4 – Error=PSNR (left) and Error=SSIM (right) progress over each epoch of unsupervised
small network on testing dataset.

4.2 Large Network

Large network is much deeper compared to small network. It was described in section 3.6.2

and in the following we present the results obtained during training.

4.2.1 Supervised training

This approach reconstructs images from compressed measurements. Like with small networks,

we show the results after 200 training epochs. Figure 4.5 shows the progress of PSNR and SSIM

on the validation dataset. Large network, improves PSNR in approximately 1.1 dB and SSIM

31

Chapter 4. Results

0.03 with respect to small network. Figure 4.6 shows the same information explained before

on the testing datatset.

(a) (b)

Figure 4.5 – Error=PSNR (left) and Error=SSIM (right) progress over each epoch of supervised
large network on validation dataset.

(a) (b)

Figure 4.6 – Error=PSNR (left) and Error=SSIM (right) progress over each epoch of supervised
large network on testing dataset.

4.2.2 Unsupervised training

The training for unsupervised learning uses the reshaped original images as its input. The

compression phase is part of the network architecture and in the following we present the

results of the training. Figure 4.7 shows the progress in PSNR and SSIM over each epoch in

32

4.2. Large Network

the validation dataset and figure 4.8 on the testing dataset. Compared to the small network it

improves PSNR by 1 dB and SSIM by 0.04.

(a) (b)

Figure 4.7 – Error=PSNR (left) and Error=SSIM (right) progress over each epoch of unsupervised
large network on validation dataset.

(a) (b)

Figure 4.8 – Error=PSNR (left) and Error=SSIM (right) progress over each epoch of unsupervised
large network on testing dataset.

33

Chapter 4. Results

4.3 Results summary

In this section we present a compendium of training and outcome of all proposed architecture

networks for recovering the images. Table 4.1 shows PSNR for each dataset and Table 4.2 does

the same for SSIM. Additionaly, we add a column representing the denoised testing images

using BM3D[21]. Using BM3D does not increase quality considerably but, it helps remove

the block representation introduced during preprocessing. It is clear that large network’s

performance is better.

Table 4.1 – Comparison of PSNR performance for each proposed network.

Network PSNR TRAINING PSNR VALIDATION PSNR TESTING PSNR TESTING DENOISED
Small Supervised 26.47 dB 26.31 dB 22.37 dB 22.54 dB
Small Unsupervised 28.19 dB 28.03 dB 24.02 dB 24.24 dB
Large Supervised 27.60 dB 27.42 dB 22.73 dB 22.91 dB
Large Unsupervised 29.14 dB 28.96 dB 24.63 dB 24.77 dB

Table 4.2 – Comparison of SSIM performance for each proposed network.

Network SSIM TRAINING SSIM VALIDATION SSIM TESTING PSNR TESTING DENOISED
Small Supervised 0.7507 0.7466 0.6062 0.6195
Small Unsupervised 0.7925 0.7891 0.6533 0.6715
Large Supervised 0.7819 0.7781 0.6306 0.6381
Large Unsupervised 0.8155 0.8124 0.6873 0.6947

34

4.4. Reconstruction of testing dataset images

4.4 Reconstruction of testing dataset images

In this section we show all testing images and the difference in reconstruction capabilities for

each network. Each figure will provide a visual insight of the perfomance of each network. See

figures 4.9, 4.10, 4.11 and 4.12.

Figure 4.9 – Reconstructed barbara, boats, bridge and cameraman compared against the
ground truth, PSNR and SSIM.

35

Chapter 4. Results

Figure 4.10 – Reconstructed couple, fingerprint, flintstones and foreman images compared
against the ground truth, PSNR and SSIM.

36

4.4. Reconstruction of testing dataset images

Figure 4.11 – Reconstructed house, lena, man and mandrill images compared against the
ground truth, PSNR and SSIM.

37

Chapter 4. Results

Figure 4.12 – Reconstructed monarch, montage, parrot, peppers and woman images compared
against the ground truth, PSNR and SSIM.

38

4.5. Computational reconstruction time and quality comparison against traditional
methods

4.5 Computational reconstruction time and quality comparison against

traditional methods

Table 4.3 compares our approach against some of the most recognized state-of-the-art al-

gorithms for reconstruction. The table shows the average computational time and quality

for the testing dataset. It is clear that using CNN’s performs better in terms of quality and

speed up. Particularly, using large network yields the best visual impact quality and speeds

the recovery process more than 100x for NLR-CS, 90x for TVAL3 and 188x for D-AMP. It is

important, however, to mention that the reported time for our approach is obtained using an

Intel Xeon Core E5-2690 2.9GHz and the MATLAB code provided by their authors. Their code

was adapted to have a fair comparison with our settings. That is using the same image size,

compression rate and block size. The code implementing their proposed recovery algorithm

was not touched. Our CNN’s did not use the GPU for this test, we use the same CPU. Using

GPU will considerably increase the speed-up even more.

As an example, figure 4.13 shows the the reconstruction of cameraman using several algorithms

and our large network. While PSNR is similar among different approaches, the visual impact

and SSIM of our network performs better.

Table 4.3 – Comparison of reconstructing testing dataset with several algorithms with subrate
1

16 .

Network TIME(sec) PSNR SSIM
TVAL3 255.50 23.04 dB 0.5863
NLR-CS 289.31 20.59 dB 0.5575
D-AMP 531.61 20.05 dB 0.3628
Small Supervised 0.1654 22.39 dB 0.6119
Small Unsupervised 0.3856 24.04 dB 0.6595
Large Supervised 0.6099 22.77 dB 0.6360
Large Unsupervised 0.7612 25.18 0.6937

39

Chapter 4. Results

Figure 4.13 – Reconstructed cameraman using traditional CS algorithms and large network.

4.6 Reconstruction with alternate compression rates

In this section we present the outcome when using subrates 1
10 , C = 10 and 1

8 , C = 8. We are

only using large network because it produces the best results. As it will be seen, the gain in

information is about 2 dB for PSNR and 0.05 for SSIM.

4.6.1 Compression rate 1/10

Here we present the performance of our approach when reconstructing lena, barbara and

woman. We also present the performance of the network during training on the testing dataset.

See igure 4.14.

Figure 4.16 shows the reconstructed images with subrate 1
10 . Comparing against subrate 1

16

there is an expected improvement and the visual impact was also well preserved. We show

this result so is easy to evaluate the trade-off between quality and compression ratio.

40

4.6. Reconstruction with alternate compression rates

(a) (b)

Figure 4.14 – Error=PSNR (left) and Error=SSIM (right) development of testing dataset during
training for compression ratio 1/10.

4.6.2 Compression rate 1/8

In this section we introduce the same results as before for a compression ration of 1
8 . Figure

4.15 shows training phase.

(a) (b)

Figure 4.15 – Error=PSNR (left) and Error=SSIM (right) development of testing dataset during
training for compression ratio 1/8.

Figure 4.16 shows the reconstructed images with both subrates. It is also evident that decreas-

ing the compression ratio also helps getting rid off the block effect which would not require

any denoising. This is also another feature of our network proposal.

41

Chapter 4. Results

Figure 4.16 – Reconstructed barbara, lena and woman using subrates 1/8 and 1/10.

42

5 Conclusion

In this thesis we have proposed a method that, after evaluation of our experiments, suc-

cessfully recovers original images from compressed measurements. We have found out that

this method is able to perform much faster and improves quality and visual impact when

compared to traditional methods. Namely, we have introduced an approach that uses deep

learning with CNN’s. Two different network architectures have been proposed: small network

and large network. Small network has a performance that is not as good as the large network

but, it has the advantage of being lighter and thereby performing twice as fast. Besides, the

loss in reconstruction quality is not large. Large network is deeper and has more parameters,

but its performance is better. In fact, it produces images that are 2 to 4 dB’s higher in terms of

PSNR when compared to iterative state-of-the-art methods publicly available. Not only that

but, our method seems to be more capable of encapsulating and reconstructing the original

structure of the image which is supported by the higher values of SSIM. Having high values

of SSIM provides a better visual impact. Besides, if we decrease the compression ratio our

network gives images that without further processing seem appealing to the human eye. That

is, no extra denoising phase is needed.

Based on our experimentation we have also demonstrated that while learning the sensing

matrixΦ imposes extra design constraints, it also improves considerably reconstructed images

as compared to i.i.d. Gaussian matrices. Furthermore, learning the sensing matrix Φ may

avoid generating random matrices in hardware, which is a very expensive process.

Even though our approach is faster because it makes used of optimized GPU’s, it may still be a

good choice for many real time applications due to the fact that iterative methods are very

slow. With this approach we can give a speed up of up to 188x using the heaviest large network.

Using the other networks would increase that ratio even more.

43

Chapter 5. Conclusion

5.1 Future work

There are interesting ideas still remaining to be tested. First, we believe that increasing and

extending the number of training images will ultimately generate better results. Therefore,

changing the training dataset for a much bigger one seems to be promising. Second, trying to

reconstruct images with higher resolution like 4K is also good way to asses our implementation.

We think that our approach is not sensible to image size but having real proof is also necessary

to support this claim. In fact, there is some evidence that scaling the image size produces even

better results. Third, having a fixed sensing matrixΦ is also a good improvement but another

thing to consider is binarizing it. That is, the elements of the sensing matrix only have values

0 or 1. That would allow even cheaper hardware implementation for CS sensors. Recently,

there has been development on this topic. Integrate batch normalization during the training

phase also may help improve the reconstruction of the images but it still needs to be further

investigated.

44

A Learned sensing matrices and net-
work parameters

A.0.1 Unsupervised small network

Figure A.2 shows the graphical representation of the sensing matrix learned during training.

Each small square is interpreted as the subsampling matrix for each input dimension.

Figure A.1 – Sensing matrix for small network.

45

Appendix A. Learned sensing matrices and network parameters

A.0.2 Unsupervised large network

Figure A.2 shows the graphical representation of the sensing matrix learned during training.

Each small square is interpreted as the subsampling matrix for each input dimension.

Figure A.2 – Sensing matrix for large network.

A.0.3 Network implementation settings

Table A.1 lists the details of each of our networks for reconstruction images.

Table A.1 – Implementation details of each proposed network.

Network # of layers # hidden layers # parameters ω appprox. train time
Small Supervised 2 0 313728 3.3 hrs
Small Unsupervised 3 1 350608 4.85 hrs
Large Supervised 3 1 42766592 18 hrs
Large Unsupervised 4 2 42803472 40 hrs

46

Bibliography

[1] Artificial neural network. https://en.wikipedia.org/wiki/Artificial_neural_network. [On-

line; accessed 26-08-2016].

[2] CS231n: Convolutional Neural Networks for Visual Recognition. http://cs231n.stanford.

edu/. [Online; accessed 02-09-2016].

[3] Deep Learning Compared. https://http://deeplearning4j.org/

compare-dl4j-torch7-pylearn.html. [Online; accessed 29-08-2016].

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-

fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-

sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software

available from tensorflow.org.

[5] A. Adler, D. Boublil, M. Elad, and M. Zibulevsky. A deep learning approach to block-based

compressed sensing of images. http://arxiv.org/abs/1606.01519, 2016.

[6] R. G. Baraniuk. Compressive sensing. IEEE signal processing magazine, 24(4), 2007.

[7] C. M. Bishop. Pattern recognition and machine learning, 2006.

[8] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain neural net-

works compete with bm3d? In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2392–2399. IEEE, 2012.

[9] E. Candes and J. Romberg. Sparsity and incoherence in compressive sampling. Inverse

problems, 23(3):969, 2007.

[10] E. J. Candes. The restricted isometry property and its implications for compressed

sensing. Comptes Rendus Mathematique, 346(9):589–592, 2008.

[11] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal re-

construction from highly incomplete frequency information. IEEE Transactions on

information theory, 52(2):489–509, 2006.

47

https://en.wikipedia.org/wiki/Artificial_neural_network
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
https://http://deeplearning4j.org/compare-dl4j-torch7-pylearn.html
https://http://deeplearning4j.org/compare-dl4j-torch7-pylearn.html

Bibliography

[12] E. J. Candes and J. K. Romberg. Signal recovery from random projections. In Electronic

Imaging 2005, pages 76–86. International Society for Optics and Photonics, 2005.

[13] E. J. Candès and J. K. Romberg. Errata for quantitative robust uncertainty principles

and optimally sparse decompositions. Foundations of Computational Mathematics,

7(4):529–531, 2007.

[14] E. J. Candes, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccu-

rate measurements. Communications on pure and applied mathematics, 59(8):1207–1223,

2006.

[15] E. J. Candes and T. Tao. Decoding by linear programming. IEEE transactions on informa-

tion theory, 51(12):4203–4215, 2005.

[16] E. J. Candes and T. Tao. Near-optimal signal recovery from random projections: Universal

encoding strategies? IEEE transactions on information theory, 52(12):5406–5425, 2006.

[17] E. J. Candès and M. B. Wakin. An introduction to compressive sampling. Signal Processing

Magazine, IEEE, 25(2):21–30, 2008.

[18] C. Chen, E. W. Tramel, and J. E. Fowler. Compressed-sensing recovery of images and

video using multihypothesis predictions. In Asilomar Conference on Signals, Systems, and

Computers, 2011.

[19] F. Chollet. Keras. https://github.com/fchollet/keras, 2015.

[20] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for

machine learning. In BigLearn, NIPS Workshop, 2011.

[21] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-

domain collaborative filtering. IEEE Transactions on image processing, 16(8):2080–2095,

2007.

[22] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, D. Maturana,

M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw, M. Heilman, diogo149, B. McFee, H. Wei-

deman, takacsg84, peterderivaz, Jon, instagibbs, D. K. Rasul, CongLiu, Britefury, and

J. Degrave. Lasagne: First release., Aug. 2015.

[23] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image

super-resolution. In Computer Vision–ECCV 2014. Springer International Publishing,

2014.

[24] W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang. Compressive sensing via nonlocal low-rank

regularization. IEEE Transactions on Image Processing, 23(8):3618–3632, 2014.

[25] D. L. Donoho. Compressed sensing. IEEE Trans. Information Theory, 52(4):1289–1306,

2006.

48

https://github.com/fchollet/keras

Bibliography

[26] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Bara-

niuk. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine,

25(2):83–91, 2008.

[27] J. E. Fowler, S. Mun, and E. W. Tramel. Multiscale block compressed sensing with

smoothed projected landweber reconstruction. In European Signal Processing Conference

(EUSIPCO), pages 564–568, 2011.

[28] J. E. Fowler, S. Mun, and E. W. Tramel. Block-based compressed sensing of images and

video. Foundations and Trends in Signal Processing, 4(4):297–416, 2012.

[29] R. Frischholz and U. Dieckmann. Bioid. HumanScan Inc.,“http://www. human scan.

de/products/bioid/bioid31. php, 2003.

[30] L. Gan. Block compressed sensing of natural images. In 2007 15th International conference

on digital signal processing, pages 403–406. IEEE, 2007.

[31] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural

networks. In Aistats, volume 9, pages 249–256, 2010.

[32] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Aistats,

volume 15, page 275, 2011.

[33] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A

database for studying face recognition in unconstrained environments. Technical Report

07-49, University of Massachusetts, Amherst, October 2007.

[34] M. Iliadis, L. Spinoulas, and A. K. Katsaggelos. Deep fully-connected networks for video

compressive sensing. arXiv preprint arXiv:1603.04930, 2016.

[35] M. Iliadis, L. Spinoulas, and A. K. Katsaggelos. Deepbinarymask: Learning a binary mask

for video compressive sensing. arXiv preprint arXiv:1607.03343, 2016.

[36] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and

T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[37] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of

the 3rd International Conference on Learning Representations (ICLR), 2014.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-

lutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[39] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok. Reconnet: Non-iterative

reconstruction of images from compressively sensed random measurements. arXiv

preprint arXiv:1601.06892, 2016.

49

Bibliography

[40] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[41] C. Li, W. Yin, H. Jiang, and Y. Zhang. An efficient augmented lagrangian method with ap-

plications to total variation minimization. Computational Optimization and Applications,

56(3):507–530, 2013.

[42] S. Mallat. A wavelet tour of signal processing. Academic press, 1999.

[43] C. A. Metzler, A. Maleki, and R. G. Baraniuk. From denoising to compressed sensing.

2014.

[44] A. Mousavi, A. B. Patel, and R. G. Baraniuk. A deep learning approach to structured signal

recovery. arXiv preprint arXiv:1508.04065, 2015.

[45] S. Mun and J. E. Fowler. Block compressed sensing of images using directional transforms.

In 2009 16th IEEE international conference on image processing (ICIP), pages 3021–3024.

IEEE, 2009.

[46] N. Ratlif. Lecture notes mathematics for intelligent systems, October 2014.

[47] S. Ruder. An overview of gradient descent algorithms. http://sebastianruder.com/about/.

[Online; accessed 05-09-2016].

[48] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: a database and web-

based tool for image annotation. International journal of computer vision, 77(1):157–173,

2008.

[49] Theano Development Team. Theano: A Python framework for fast computation of

mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[50] M. Toussaint. Lecture notes machine learning and optimization, April 2015.

[51] B. Van Merriënboer, D. Bahdanau, V. Dumoulin, D. Serdyuk, D. Warde-Farley, J. Chorowski,

and Y. Bengio. Blocks and fuel: Frameworks for deep learning. arXiv preprint

arXiv:1506.00619, 2015.

[52] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. F. Kelly,

and R. G. Baraniuk. An architecture for compressive imaging. In 2006 International

Conference on Image Processing, pages 1273–1276. IEEE, 2006.

[53] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from

error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–

612, 2004.

[54] Y. Weiss, H. S. Chang, and W. T. Freeman. Learning compressed sensing. In Snowbird

Learning Workshop, Allerton, CA, 2007.

50

http://sebastianruder.com/about/

Declaration

I hereby declare that the work presented in this thesis is entirely my own. I did not use any other

sources and references that the listed ones. I have marked all direct or indirect statements

from other sources contained therein as quotations. Neither this work nor significant parts of

it were part of another examination procedure. I have not published this work in whole or in

part before. The electronic copy is consistent with all submitted copies.

Stuttgart, Germany Luis Manuel Bracamontes Hernandez

51

	Abstract
	List of figures
	List of tables
	List of algorithms
	Introduction
	Motivation
	Outline

	Theoretical foundations
	Compressed Sensing
	Sparsity of a signal
	Incoherence
	Sensing Matrix and RIP
	Signal Recovery

	Deep Learning
	Supervised learning
	Unsupervised learning
	Neural Networks
	Convolutional Neural Networks

	Implementation methodology
	Theano
	Sdeepy

	Graphics Procesing Unit (GPU)
	Datasets
	Training set
	Validation set
	Testing set

	Preprocessing of the images for supervised learning
	Preprocessing of the images for unsupervised learning
	Network architectures for CS recovery
	Small supervised CNN network
	Small usupervised CNN network
	Large supervised CNN network
	Large unsupervised CNN network

	Training CNN's
	Weight initialization
	Loss function
	Parameter update rule
	Batch size training

	Postprocessing of reconstructed images
	Evaluation metrics
	PSNR
	SSIM

	Results
	Small network
	Supervised training
	Unsupervised training

	Large Network
	Supervised training
	Unsupervised training

	Results summary
	Reconstruction of testing dataset images
	Computational reconstruction time and quality comparison against traditional methods
	Reconstruction with alternate compression rates
	Compression rate 1/10
	Compression rate 1/8

	Conclusion
	Future work

	Learned sensing matrices and network parameters
	Unsupervised small network
	Unsupervised large network
	Network implementation settings

	Bibliography

