Artikel in Tagungsband INPROC-2024-01

Bibliograph.
Daten
Przytarski, Dennis; Stach, Christoph; Mitschang, Bernhard: Assessing Data Layouts to Bring Storage Engine Functionality to Blockchain Technology.
In: Tung X. Bui (Hrsg): Proceedings of the 57th Hawaii International Conference on System Sciences (HICSS '24).
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik.
S. 5091-5100, englisch.
ScholarSpace, Januar 2024.
ISBN: 978-0-9981331-7-1.
Artikel in Tagungsband (Konferenz-Beitrag).
CR-Klassif.H.3.1 (Content Analysis and Indexing)
H.3.2 (Information Storage)
H.3.3 (Information Search and Retrieval)
Keywordsblockchain; storage engine; queries
Kurzfassung

Nowdays, modern applications often use blockchains as a secure data store. However, querying blockchain data is more challenging than querying conventional databases due to blockchains being primarily designed for the logging of asset transfers, such as cryptocurrencies, rather than storing and reading generic data. To improve the experience of querying blockchain data and make it comparable to querying conventional databases, new design approaches of the storage engine for blockchain technology are required. An important aspect is the data layout of a block, as it plays a crucial role in facilitating reading of blockchain data. In this paper, we identify a suitable data layout that provides the required query capabilities while preserving the key properties of blockchain technology. Our goal is to overcome the limitations of current data access models in blockchains, such as the reliance on auxiliary data storages and error-prone smart contracts. To this end, we compare four promising data layouts with data models derived from document, row, column, and triple stores in terms of schema flexibility, read pattern generality, and relational algebra suitability. We then assess the most suitable data layout for blockchain technology.

Volltext und
andere Links
Link zu Volltext
KontaktSenden Sie eine E-Mail an <Christoph.Stach@ipvs.uni-stuttgart.de>.
Abteilung(en)Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Anwendersoftware
Projekt(e)NUCLIDE
Eingabedatum8. Januar 2024
   Publ. Informatik