Bild mit Unilogo
homeicon university sucheicon search kontakticon contact impressicon legal notice
unilogo University of Stuttgart 
Institute of Formal Methods in Computer Science

Division of Theoretical Computer Science

englishicon
 

Publications

by Alexander Lauser

[20] M. Kufleitner and A. Lauser. Nesting negations in FO2 over finite words. Technical report Nr. 2013/07, Formale Methoden der Informatik, Universität Stuttgart, Germany, September 2013. [ bib | http ]
[19] M. Kufleitner and A. Lauser. Quantifier alternation in two-variable first-order logic with successor is decidable. In STACS 2013, Proceedings, volume 20 of LIPIcs, pages 305-316. Dagstuhl Publishing, 2013. [ bib | DOI | pdf | http ]
[18] M. Kufleitner and A. Lauser. Around dot-depth one. Int. J. Found. Comput. Sci., 23(6):1323-1339, 2012. Special issue AFL 2011. [ bib | © World Scientific Publishing Company | pdf | http ]
[17] M. Kufleitner and A. Lauser. The join levels of the Trotter-Weil hierarchy are decidable. In MFCS 2012, Proceedings, volume 7464 of Lecture Notes in Computer Science, pages 603-614. Springer, 2012. [ bib | © Springer | arXiv ]
[16] M. Kufleitner and A. Lauser. The join of the varieties of R-trivial and L-trivial monoids via combinatorics on words. Discrete Mathematics & Theoretical Computer Science, 14(1):141-146, 2012. [ bib | arXiv | http ]
[15] F. Jahn, M. Kufleitner, and A. Lauser. Regular ideal languages and their Boolean combinations. In CIAA 2012, Proceedings, volume 7381 of Lecture Notes in Computer Science, pages 205-216. Springer, 2012. [ bib | © Springer | arXiv ]
[14] M. Kufleitner and A. Lauser. Lattices of logical fragments over words (Extended abstract). In ICALP 2012, Proceedings Part II, volume 7392 of Lecture Notes in Computer Science, pages 275-286. Springer, 2012. [ bib | © Springer | arXiv ]
[13] M. Kufleitner and A. Lauser. Lattices of logical fragments over words. Technical report Nr. 2012/03, Formale Methoden der Informatik, Universität Stuttgart, Germany, March 2012. [ bib | arXiv | http ]
[12] M. Kufleitner and A. Lauser. Partially ordered two-way Büchi automata. Int. J. Found. Comput. Sci., 22(8):1861-1876, 2011. Special issue CIAA 2010. [ bib | © World Scientific Publishing Company | pdf | http ]
[11] M. Kufleitner and A. Lauser. Around dot-depth one (Extended abstract). In AFL 2011, Proceedings, pages 255-269, 2011. [ bib | arXiv | pdf ]
[10] M. Kufleitner and A. Lauser. Around dot-depth one. Technical report Nr. 2011/03, Formale Methoden der Informatik, Universität Stuttgart, Germany, March 2011. [ bib | arXiv | http ]
[9] M. Kufleitner and A. Lauser. Languages of dot-depth one over infinite words. In LICS 2011, Proceedings, pages 23-32. IEEE Computer Society, 2011. [ bib | arXiv | pdf ]
[8] J. Kallas, M. Kufleitner, and A. Lauser. First-order fragments with successor over infinite words. In STACS 2011, Proceedings, volume 9 of LIPIcs, pages 356-367. Dagstuhl Publishing, 2011. [ bib | arXiv | pdf | http ]
[7] J. Kallas, M. Kufleitner, and A. Lauser. First-order fragments with successor over infinite words. Technical report Nr. 2010/08, Formale Methoden der Informatik, Universität Stuttgart, Germany, December 2010. [ bib | arXiv | http ]
[6] M. Kufleitner and A. Lauser. Partially ordered two-way Büchi automata. In CIAA 2010, Proceedings, volume 6482 of Lecture Notes in Computer Science, pages 181-190. Springer, 2011. [ bib | © Springer | pdf | http ]
[5] M. Kufleitner and A. Lauser. Partially ordered two-way Büchi automata. Technical report Nr. 2010/03, Formale Methoden der Informatik, Universität Stuttgart, Germany, June 2010. [ bib | arXiv | http ]
[4] L. Dartois, M. Kufleitner, and A. Lauser. Rankers over infinite words (Extended abstract). In DLT 2010, Proceedings, volume 6224 of Lecture Notes in Computer Science, pages 148-159. Springer, 2010. [ bib | © Springer | pdf | http ]
[3] L. Dartois, M. Kufleitner, and A. Lauser. Rankers over infinite words. Technical report Nr. 2010/01, Formale Methoden der Informatik, Universität Stuttgart, Germany, May 2010. [ bib | arXiv | http ]
[2] A. Lauser. Fragmente einer Intervall-Logik. Diplomarbeit Nr. 2823, Universität Stuttgart; Fakultät Informatik, Elektrotechnik und Informationstechnik. Institut für Formale Methoden der Informatik, Abteilung Theoretische Informatik, Stuttgart, Germany, März 2009. [ bib | pdf | http ]
[1] A. Lauser. Vergleich von Adaptionsstrategien für elliptische partielle Differentialgleichungen. Studienarbeit: Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Simulation großer Systeme, Januar 2008. [ bib | pdf | http ]

This file was generated by bibtex2html 1.96.