Bild mit Unilogo
homeicon uni sucheicon suche kontakticon kontakt impressicon impressum
unilogo Universität Stuttgart 
Institut für Formale Methoden der Informatik

Abteilung Theoretische Informatik

englishicon
 

Veröffentlichungen

von Alexander Lauser

[20] M. Kufleitner and A. Lauser. Nesting negations in FO2 over finite words. Technical report Nr. 2013/07, Formale Methoden der Informatik, Universität Stuttgart, Germany, September 2013. [ bib | http ]
[19] M. Kufleitner and A. Lauser. Quantifier alternation in two-variable first-order logic with successor is decidable. In STACS 2013, Proceedings, volume 20 of LIPIcs, pages 305-316. Dagstuhl Publishing, 2013. [ bib | DOI | pdf | http ]
[18] M. Kufleitner and A. Lauser. Around dot-depth one. Int. J. Found. Comput. Sci., 23(6):1323-1339, 2012. Special issue AFL 2011. [ bib | © World Scientific Publishing Company | pdf | http ]
[17] M. Kufleitner and A. Lauser. The join levels of the Trotter-Weil hierarchy are decidable. In MFCS 2012, Proceedings, volume 7464 of Lecture Notes in Computer Science, pages 603-614. Springer, 2012. [ bib | © Springer | arXiv ]
[16] M. Kufleitner and A. Lauser. The join of the varieties of R-trivial and L-trivial monoids via combinatorics on words. Discrete Mathematics & Theoretical Computer Science, 14(1):141-146, 2012. [ bib | arXiv | http ]
[15] F. Jahn, M. Kufleitner, and A. Lauser. Regular ideal languages and their Boolean combinations. In CIAA 2012, Proceedings, volume 7381 of Lecture Notes in Computer Science, pages 205-216. Springer, 2012. [ bib | © Springer | arXiv ]
[14] M. Kufleitner and A. Lauser. Lattices of logical fragments over words (Extended abstract). In ICALP 2012, Proceedings Part II, volume 7392 of Lecture Notes in Computer Science, pages 275-286. Springer, 2012. [ bib | © Springer | arXiv ]
[13] M. Kufleitner and A. Lauser. Lattices of logical fragments over words. Technical report Nr. 2012/03, Formale Methoden der Informatik, Universität Stuttgart, Germany, March 2012. [ bib | arXiv | http ]
[12] M. Kufleitner and A. Lauser. Partially ordered two-way Büchi automata. Int. J. Found. Comput. Sci., 22(8):1861-1876, 2011. Special issue CIAA 2010. [ bib | © World Scientific Publishing Company | pdf | http ]
[11] M. Kufleitner and A. Lauser. Around dot-depth one (Extended abstract). In AFL 2011, Proceedings, pages 255-269, 2011. [ bib | arXiv | pdf ]
[10] M. Kufleitner and A. Lauser. Around dot-depth one. Technical report Nr. 2011/03, Formale Methoden der Informatik, Universität Stuttgart, Germany, March 2011. [ bib | arXiv | http ]
[9] M. Kufleitner and A. Lauser. Languages of dot-depth one over infinite words. In LICS 2011, Proceedings, pages 23-32. IEEE Computer Society, 2011. [ bib | arXiv | pdf ]
[8] J. Kallas, M. Kufleitner, and A. Lauser. First-order fragments with successor over infinite words. In STACS 2011, Proceedings, volume 9 of LIPIcs, pages 356-367. Dagstuhl Publishing, 2011. [ bib | arXiv | pdf | http ]
[7] J. Kallas, M. Kufleitner, and A. Lauser. First-order fragments with successor over infinite words. Technical report Nr. 2010/08, Formale Methoden der Informatik, Universität Stuttgart, Germany, December 2010. [ bib | arXiv | http ]
[6] M. Kufleitner and A. Lauser. Partially ordered two-way Büchi automata. In CIAA 2010, Proceedings, volume 6482 of Lecture Notes in Computer Science, pages 181-190. Springer, 2011. [ bib | © Springer | pdf | http ]
[5] M. Kufleitner and A. Lauser. Partially ordered two-way Büchi automata. Technical report Nr. 2010/03, Formale Methoden der Informatik, Universität Stuttgart, Germany, June 2010. [ bib | arXiv | http ]
[4] L. Dartois, M. Kufleitner, and A. Lauser. Rankers over infinite words (Extended abstract). In DLT 2010, Proceedings, volume 6224 of Lecture Notes in Computer Science, pages 148-159. Springer, 2010. [ bib | © Springer | pdf | http ]
[3] L. Dartois, M. Kufleitner, and A. Lauser. Rankers over infinite words. Technical report Nr. 2010/01, Formale Methoden der Informatik, Universität Stuttgart, Germany, May 2010. [ bib | arXiv | http ]
[2] A. Lauser. Fragmente einer Intervall-Logik. Diplomarbeit Nr. 2823, Universität Stuttgart; Fakultät Informatik, Elektrotechnik und Informationstechnik. Institut für Formale Methoden der Informatik, Abteilung Theoretische Informatik, Stuttgart, Germany, März 2009. [ bib | pdf | http ]
[1] A. Lauser. Vergleich von Adaptionsstrategien für elliptische partielle Differentialgleichungen. Studienarbeit: Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Simulation großer Systeme, Januar 2008. [ bib | pdf | http ]

This file was generated by bibtex2html 1.96.